Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293518026> ?p ?o ?g. }
- W4293518026 abstract "Nonlinearity and uncertainty are two critical characteristics when process data modeling is applied to soft sensor. In this paper, a supervised variational auto-encoder (SVAE) is developed to capture both nonlinear and untcertain feature for regression modeling. SVAE, as a deep generative model, provides a probabilistic framework, based on which the deep nonlinear feature extraction is carried out and a probabilistic respresentation can be obtained. In this way, the probability distribution mapping between process data and key quality variables is learned so that quality prediction can be well achieved. The feasibility of the proposed method is illustrated by a numerical example and an industrial example, and the effectiveness of the proposed model is verified by comparing with the linear model." @default.
- W4293518026 created "2022-08-30" @default.
- W4293518026 creator A5020778867 @default.
- W4293518026 creator A5026108587 @default.
- W4293518026 creator A5027269981 @default.
- W4293518026 creator A5049768588 @default.
- W4293518026 date "2022-08-03" @default.
- W4293518026 modified "2023-09-30" @default.
- W4293518026 title "Deep Learning of Process Data with Supervised Variational Auto-encoder for Soft Sensor" @default.
- W4293518026 cites W1937731213 @default.
- W4293518026 cites W1980147362 @default.
- W4293518026 cites W1997208277 @default.
- W4293518026 cites W2000651380 @default.
- W4293518026 cites W2012908648 @default.
- W4293518026 cites W2048407872 @default.
- W4293518026 cites W2053792088 @default.
- W4293518026 cites W2274441380 @default.
- W4293518026 cites W2509008543 @default.
- W4293518026 cites W2539271148 @default.
- W4293518026 cites W2539756354 @default.
- W4293518026 cites W2580937131 @default.
- W4293518026 cites W2612307464 @default.
- W4293518026 cites W2742763523 @default.
- W4293518026 cites W2765774435 @default.
- W4293518026 cites W2788805965 @default.
- W4293518026 cites W2920714358 @default.
- W4293518026 cites W2982252423 @default.
- W4293518026 cites W2988720209 @default.
- W4293518026 cites W3002630677 @default.
- W4293518026 cites W3080648230 @default.
- W4293518026 cites W3120987150 @default.
- W4293518026 cites W3123899295 @default.
- W4293518026 cites W3193186510 @default.
- W4293518026 cites W3199312321 @default.
- W4293518026 doi "https://doi.org/10.1109/ddcls55054.2022.9858451" @default.
- W4293518026 hasPublicationYear "2022" @default.
- W4293518026 type Work @default.
- W4293518026 citedByCount "1" @default.
- W4293518026 countsByYear W42935180262023 @default.
- W4293518026 crossrefType "proceedings-article" @default.
- W4293518026 hasAuthorship W4293518026A5020778867 @default.
- W4293518026 hasAuthorship W4293518026A5026108587 @default.
- W4293518026 hasAuthorship W4293518026A5027269981 @default.
- W4293518026 hasAuthorship W4293518026A5049768588 @default.
- W4293518026 hasConcept C101738243 @default.
- W4293518026 hasConcept C108583219 @default.
- W4293518026 hasConcept C111919701 @default.
- W4293518026 hasConcept C114289077 @default.
- W4293518026 hasConcept C115575686 @default.
- W4293518026 hasConcept C118505674 @default.
- W4293518026 hasConcept C119857082 @default.
- W4293518026 hasConcept C121332964 @default.
- W4293518026 hasConcept C124101348 @default.
- W4293518026 hasConcept C138885662 @default.
- W4293518026 hasConcept C153180895 @default.
- W4293518026 hasConcept C154945302 @default.
- W4293518026 hasConcept C158622935 @default.
- W4293518026 hasConcept C167966045 @default.
- W4293518026 hasConcept C2776401178 @default.
- W4293518026 hasConcept C39890363 @default.
- W4293518026 hasConcept C41008148 @default.
- W4293518026 hasConcept C41895202 @default.
- W4293518026 hasConcept C49937458 @default.
- W4293518026 hasConcept C52622490 @default.
- W4293518026 hasConcept C62520636 @default.
- W4293518026 hasConcept C67186912 @default.
- W4293518026 hasConcept C77088390 @default.
- W4293518026 hasConcept C98045186 @default.
- W4293518026 hasConceptScore W4293518026C101738243 @default.
- W4293518026 hasConceptScore W4293518026C108583219 @default.
- W4293518026 hasConceptScore W4293518026C111919701 @default.
- W4293518026 hasConceptScore W4293518026C114289077 @default.
- W4293518026 hasConceptScore W4293518026C115575686 @default.
- W4293518026 hasConceptScore W4293518026C118505674 @default.
- W4293518026 hasConceptScore W4293518026C119857082 @default.
- W4293518026 hasConceptScore W4293518026C121332964 @default.
- W4293518026 hasConceptScore W4293518026C124101348 @default.
- W4293518026 hasConceptScore W4293518026C138885662 @default.
- W4293518026 hasConceptScore W4293518026C153180895 @default.
- W4293518026 hasConceptScore W4293518026C154945302 @default.
- W4293518026 hasConceptScore W4293518026C158622935 @default.
- W4293518026 hasConceptScore W4293518026C167966045 @default.
- W4293518026 hasConceptScore W4293518026C2776401178 @default.
- W4293518026 hasConceptScore W4293518026C39890363 @default.
- W4293518026 hasConceptScore W4293518026C41008148 @default.
- W4293518026 hasConceptScore W4293518026C41895202 @default.
- W4293518026 hasConceptScore W4293518026C49937458 @default.
- W4293518026 hasConceptScore W4293518026C52622490 @default.
- W4293518026 hasConceptScore W4293518026C62520636 @default.
- W4293518026 hasConceptScore W4293518026C67186912 @default.
- W4293518026 hasConceptScore W4293518026C77088390 @default.
- W4293518026 hasConceptScore W4293518026C98045186 @default.
- W4293518026 hasFunder F4320321001 @default.
- W4293518026 hasLocation W42935180261 @default.
- W4293518026 hasOpenAccess W4293518026 @default.
- W4293518026 hasPrimaryLocation W42935180261 @default.
- W4293518026 hasRelatedWork W2592385986 @default.
- W4293518026 hasRelatedWork W2770818364 @default.
- W4293518026 hasRelatedWork W2772780115 @default.
- W4293518026 hasRelatedWork W2773120646 @default.