Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293522016> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4293522016 endingPage "109536" @default.
- W4293522016 startingPage "109536" @default.
- W4293522016 abstract "Accurate prediction of indoor temperature can provide more reference data for indoor thermal comfort assessment and the operational effectiveness of heating, ventilation and air conditioning equipment, making it possible to reduce unnecessary energy consumption while ensuring occupant comfort. This paper introduces a deep learning method to predict indoor air temperature. The aim is to explore the potential of a model combining LSTM with encoder-decoder and attention mechanisms in short-term forecasting and compare it with LSTM models and GRU models. The hyperparameters are optimized by TPE Bayesian optimization to facilitate the determination of various parameters in the deep model. The results show that compared with other commonly used time series prediction algorithms, the model has an advantage in the case of short-term time ahead prediction. The model can accurately predict the change trend of room temperature and maintain stability for a long time. The R-square of the prediction results is more than 0.9. This work has reference significance for the feasibility study of establishing an indoor temperature prediction model. • The Attention-LSTM architecture used to predict the room temperature. • Compare the used architecture with the LSTM architecture and GRU architecture. • TPE Bayesian hyperparametric optimization is used to determine the hyperparameters. • The architecture used is predicted to be more accurate and stable." @default.
- W4293522016 created "2022-08-30" @default.
- W4293522016 creator A5014874306 @default.
- W4293522016 creator A5064898742 @default.
- W4293522016 creator A5071562849 @default.
- W4293522016 creator A5075451551 @default.
- W4293522016 date "2022-10-01" @default.
- W4293522016 modified "2023-10-03" @default.
- W4293522016 title "Attention-LSTM architecture combined with Bayesian hyperparameter optimization for indoor temperature prediction" @default.
- W4293522016 cites W1619614355 @default.
- W4293522016 cites W1995139569 @default.
- W4293522016 cites W1997334587 @default.
- W4293522016 cites W1998662691 @default.
- W4293522016 cites W2064675550 @default.
- W4293522016 cites W2069301212 @default.
- W4293522016 cites W2549906944 @default.
- W4293522016 cites W2564971957 @default.
- W4293522016 cites W2598530959 @default.
- W4293522016 cites W2736391747 @default.
- W4293522016 cites W2776741657 @default.
- W4293522016 cites W2806104647 @default.
- W4293522016 cites W2809317444 @default.
- W4293522016 cites W2896412441 @default.
- W4293522016 cites W2898978958 @default.
- W4293522016 cites W2902285311 @default.
- W4293522016 cites W2926397283 @default.
- W4293522016 cites W2941173108 @default.
- W4293522016 cites W2979990517 @default.
- W4293522016 cites W2984347565 @default.
- W4293522016 cites W3008571545 @default.
- W4293522016 cites W3017636296 @default.
- W4293522016 cites W3021900882 @default.
- W4293522016 cites W3033993664 @default.
- W4293522016 cites W3038202720 @default.
- W4293522016 cites W3090232294 @default.
- W4293522016 cites W3157663382 @default.
- W4293522016 cites W3197822946 @default.
- W4293522016 cites W3206286754 @default.
- W4293522016 cites W3208605024 @default.
- W4293522016 cites W3217656104 @default.
- W4293522016 cites W4210763500 @default.
- W4293522016 cites W4213282054 @default.
- W4293522016 cites W4220791036 @default.
- W4293522016 cites W4223931665 @default.
- W4293522016 cites W4224070603 @default.
- W4293522016 doi "https://doi.org/10.1016/j.buildenv.2022.109536" @default.
- W4293522016 hasPublicationYear "2022" @default.
- W4293522016 type Work @default.
- W4293522016 citedByCount "15" @default.
- W4293522016 countsByYear W42935220162023 @default.
- W4293522016 crossrefType "journal-article" @default.
- W4293522016 hasAuthorship W4293522016A5014874306 @default.
- W4293522016 hasAuthorship W4293522016A5064898742 @default.
- W4293522016 hasAuthorship W4293522016A5071562849 @default.
- W4293522016 hasAuthorship W4293522016A5075451551 @default.
- W4293522016 hasConcept C103742991 @default.
- W4293522016 hasConcept C107673813 @default.
- W4293522016 hasConcept C108583219 @default.
- W4293522016 hasConcept C119857082 @default.
- W4293522016 hasConcept C122346748 @default.
- W4293522016 hasConcept C127413603 @default.
- W4293522016 hasConcept C154945302 @default.
- W4293522016 hasConcept C2778049539 @default.
- W4293522016 hasConcept C41008148 @default.
- W4293522016 hasConcept C78519656 @default.
- W4293522016 hasConcept C8642999 @default.
- W4293522016 hasConceptScore W4293522016C103742991 @default.
- W4293522016 hasConceptScore W4293522016C107673813 @default.
- W4293522016 hasConceptScore W4293522016C108583219 @default.
- W4293522016 hasConceptScore W4293522016C119857082 @default.
- W4293522016 hasConceptScore W4293522016C122346748 @default.
- W4293522016 hasConceptScore W4293522016C127413603 @default.
- W4293522016 hasConceptScore W4293522016C154945302 @default.
- W4293522016 hasConceptScore W4293522016C2778049539 @default.
- W4293522016 hasConceptScore W4293522016C41008148 @default.
- W4293522016 hasConceptScore W4293522016C78519656 @default.
- W4293522016 hasConceptScore W4293522016C8642999 @default.
- W4293522016 hasLocation W42935220161 @default.
- W4293522016 hasOpenAccess W4293522016 @default.
- W4293522016 hasPrimaryLocation W42935220161 @default.
- W4293522016 hasRelatedWork W2576264401 @default.
- W4293522016 hasRelatedWork W2782093256 @default.
- W4293522016 hasRelatedWork W3020796509 @default.
- W4293522016 hasRelatedWork W3199608561 @default.
- W4293522016 hasRelatedWork W4281616679 @default.
- W4293522016 hasRelatedWork W4283697347 @default.
- W4293522016 hasRelatedWork W4295309597 @default.
- W4293522016 hasRelatedWork W4298144215 @default.
- W4293522016 hasRelatedWork W4307195028 @default.
- W4293522016 hasRelatedWork W4309113015 @default.
- W4293522016 hasVolume "224" @default.
- W4293522016 isParatext "false" @default.
- W4293522016 isRetracted "false" @default.
- W4293522016 workType "article" @default.