Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293527415> ?p ?o ?g. }
- W4293527415 endingPage "6287" @default.
- W4293527415 startingPage "6287" @default.
- W4293527415 abstract "With the expansion of wind power grid integration, the challenges of sharp fluctuations and high uncertainty in preparing the power grid day-ahead plan and short-term dispatching are magnified. These challenges can be overcome through accurate short-term wind power process prediction based on mining historical operation data and taking full advantage of meteorological forecast information. In this paper, adopting the ERA5 reanalysis dataset as input, a short-term wind power prediction framework is proposed, combining light gradient boosting machine (LightGBM), mutual information coefficient (MIC) and nonparametric regression. Primarily, the reanalysis data of ERA5 provide more meteorological information for the framework, which can help improve the model input features. Furthermore, MIC can identify effective feature subsets from massive feature sets that significantly affect the output, enabling concise understanding of the output. Moreover, LightGBM is a prediction method with a stronger ability of goodness-of-fit, which can fully mine the effective information of wind power historical operation data to improve the prediction accuracy. Eventually, nonparametric regression expands the process prediction to interval prediction, which significantly improves the utility of the prediction results. To quantitatively analyze the prediction results, five evaluation criteria are used, namely, the Pearson correlation coefficient (CORR), the root mean square error (RMSE), the mean absolute error (MAE), the index of agreement (IA) and Kling–Gupta efficiency (KGE). Compared with support vector regression (SVR), random forest (RF) and extreme gradient boosting (XGBoost) models, the present framework can make full use of meteorological information and effectively improve the prediction accuracy, and the generated output prediction interval can also be used to promote the safe operation of power systems." @default.
- W4293527415 created "2022-08-30" @default.
- W4293527415 creator A5015507984 @default.
- W4293527415 creator A5017722791 @default.
- W4293527415 creator A5020850136 @default.
- W4293527415 creator A5030054597 @default.
- W4293527415 creator A5041123352 @default.
- W4293527415 creator A5052569932 @default.
- W4293527415 date "2022-08-29" @default.
- W4293527415 modified "2023-09-25" @default.
- W4293527415 title "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis" @default.
- W4293527415 cites W1705374184 @default.
- W4293527415 cites W1923027492 @default.
- W4293527415 cites W2043733621 @default.
- W4293527415 cites W2050148124 @default.
- W4293527415 cites W2222497113 @default.
- W4293527415 cites W2561807722 @default.
- W4293527415 cites W2566003805 @default.
- W4293527415 cites W2581205918 @default.
- W4293527415 cites W2592036976 @default.
- W4293527415 cites W2600292797 @default.
- W4293527415 cites W2605800522 @default.
- W4293527415 cites W2764018574 @default.
- W4293527415 cites W2793688347 @default.
- W4293527415 cites W2893815961 @default.
- W4293527415 cites W2897446518 @default.
- W4293527415 cites W2898939125 @default.
- W4293527415 cites W2908762496 @default.
- W4293527415 cites W2911539802 @default.
- W4293527415 cites W2912422194 @default.
- W4293527415 cites W2916454785 @default.
- W4293527415 cites W2919841204 @default.
- W4293527415 cites W2922465095 @default.
- W4293527415 cites W2926876256 @default.
- W4293527415 cites W2937440203 @default.
- W4293527415 cites W2954648193 @default.
- W4293527415 cites W3005209402 @default.
- W4293527415 cites W3016282871 @default.
- W4293527415 cites W3042732012 @default.
- W4293527415 cites W3122100638 @default.
- W4293527415 cites W3158547118 @default.
- W4293527415 cites W3200304500 @default.
- W4293527415 cites W3203973138 @default.
- W4293527415 cites W3210835446 @default.
- W4293527415 doi "https://doi.org/10.3390/en15176287" @default.
- W4293527415 hasPublicationYear "2022" @default.
- W4293527415 type Work @default.
- W4293527415 citedByCount "4" @default.
- W4293527415 countsByYear W42935274152022 @default.
- W4293527415 countsByYear W42935274152023 @default.
- W4293527415 crossrefType "journal-article" @default.
- W4293527415 hasAuthorship W4293527415A5015507984 @default.
- W4293527415 hasAuthorship W4293527415A5017722791 @default.
- W4293527415 hasAuthorship W4293527415A5020850136 @default.
- W4293527415 hasAuthorship W4293527415A5030054597 @default.
- W4293527415 hasAuthorship W4293527415A5041123352 @default.
- W4293527415 hasAuthorship W4293527415A5052569932 @default.
- W4293527415 hasBestOaLocation W42935274151 @default.
- W4293527415 hasConcept C102366305 @default.
- W4293527415 hasConcept C105795698 @default.
- W4293527415 hasConcept C119599485 @default.
- W4293527415 hasConcept C121332964 @default.
- W4293527415 hasConcept C12267149 @default.
- W4293527415 hasConcept C124101348 @default.
- W4293527415 hasConcept C127413603 @default.
- W4293527415 hasConcept C139945424 @default.
- W4293527415 hasConcept C152139883 @default.
- W4293527415 hasConcept C154945302 @default.
- W4293527415 hasConcept C169258074 @default.
- W4293527415 hasConcept C170061395 @default.
- W4293527415 hasConcept C33923547 @default.
- W4293527415 hasConcept C41008148 @default.
- W4293527415 hasConcept C46686674 @default.
- W4293527415 hasConcept C61797465 @default.
- W4293527415 hasConcept C62520636 @default.
- W4293527415 hasConcept C70153297 @default.
- W4293527415 hasConcept C78600449 @default.
- W4293527415 hasConcept C83546350 @default.
- W4293527415 hasConceptScore W4293527415C102366305 @default.
- W4293527415 hasConceptScore W4293527415C105795698 @default.
- W4293527415 hasConceptScore W4293527415C119599485 @default.
- W4293527415 hasConceptScore W4293527415C121332964 @default.
- W4293527415 hasConceptScore W4293527415C12267149 @default.
- W4293527415 hasConceptScore W4293527415C124101348 @default.
- W4293527415 hasConceptScore W4293527415C127413603 @default.
- W4293527415 hasConceptScore W4293527415C139945424 @default.
- W4293527415 hasConceptScore W4293527415C152139883 @default.
- W4293527415 hasConceptScore W4293527415C154945302 @default.
- W4293527415 hasConceptScore W4293527415C169258074 @default.
- W4293527415 hasConceptScore W4293527415C170061395 @default.
- W4293527415 hasConceptScore W4293527415C33923547 @default.
- W4293527415 hasConceptScore W4293527415C41008148 @default.
- W4293527415 hasConceptScore W4293527415C46686674 @default.
- W4293527415 hasConceptScore W4293527415C61797465 @default.
- W4293527415 hasConceptScore W4293527415C62520636 @default.
- W4293527415 hasConceptScore W4293527415C70153297 @default.
- W4293527415 hasConceptScore W4293527415C78600449 @default.
- W4293527415 hasConceptScore W4293527415C83546350 @default.