Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293536249> ?p ?o ?g. }
- W4293536249 endingPage "100518" @default.
- W4293536249 startingPage "100518" @default.
- W4293536249 abstract "Music genres can reveal our preferences and are one of the main tools for retailers, libraries, and people to organize music. In addition, the music industry uses genres as a key method to define and target different markets, and thus, being able to categorize genres is an asset for marketing and music production. Several pieces of research have been done to classify western music genres, yet nothing has been done to classify Persian music genres so far. In this research, a tailored deep neural network-based method, termed PMG-Net, is introduced to automatically classify Persian music genres. Also, to assess the PMG-Net, a dataset, named PMG-Data, consisting of 500 music from different genres of Pop, Rap, Traditional, Rock, and Monody are collected and labeled, which is made publicly available for researchers. The accuracy obtained by PMG-Net on the PMG-Data is 86%, indicating an acceptable performance of the method compared with the existing deep neural network-based approaches." @default.
- W4293536249 created "2022-08-30" @default.
- W4293536249 creator A5023237149 @default.
- W4293536249 creator A5081410795 @default.
- W4293536249 creator A5046881016 @default.
- W4293536249 date "2023-01-01" @default.
- W4293536249 modified "2023-10-13" @default.
- W4293536249 title "PMG-Net: Persian music genre classification using deep neural networks" @default.
- W4293536249 cites W1146734363 @default.
- W4293536249 cites W1525860405 @default.
- W4293536249 cites W1532553377 @default.
- W4293536249 cites W1556084866 @default.
- W4293536249 cites W1825426646 @default.
- W4293536249 cites W1966311970 @default.
- W4293536249 cites W1987404672 @default.
- W4293536249 cites W1994535653 @default.
- W4293536249 cites W2012296273 @default.
- W4293536249 cites W2031383957 @default.
- W4293536249 cites W2031767620 @default.
- W4293536249 cites W2033310064 @default.
- W4293536249 cites W2042390666 @default.
- W4293536249 cites W2051798370 @default.
- W4293536249 cites W2059652044 @default.
- W4293536249 cites W2071103260 @default.
- W4293536249 cites W2099760476 @default.
- W4293536249 cites W2115568835 @default.
- W4293536249 cites W2117539524 @default.
- W4293536249 cites W2117717972 @default.
- W4293536249 cites W2128196382 @default.
- W4293536249 cites W2133824856 @default.
- W4293536249 cites W2142236629 @default.
- W4293536249 cites W2144894928 @default.
- W4293536249 cites W2149969775 @default.
- W4293536249 cites W2153002160 @default.
- W4293536249 cites W2163922914 @default.
- W4293536249 cites W2165320163 @default.
- W4293536249 cites W2165531849 @default.
- W4293536249 cites W2178339699 @default.
- W4293536249 cites W2191779130 @default.
- W4293536249 cites W2325895212 @default.
- W4293536249 cites W2395579298 @default.
- W4293536249 cites W2397811227 @default.
- W4293536249 cites W2563031223 @default.
- W4293536249 cites W2586270101 @default.
- W4293536249 cites W2608446140 @default.
- W4293536249 cites W2725749597 @default.
- W4293536249 cites W2770871520 @default.
- W4293536249 cites W2771389830 @default.
- W4293536249 cites W2790840457 @default.
- W4293536249 cites W2793881638 @default.
- W4293536249 cites W2884367656 @default.
- W4293536249 cites W2919115771 @default.
- W4293536249 cites W2944782655 @default.
- W4293536249 cites W2945956523 @default.
- W4293536249 cites W2951111322 @default.
- W4293536249 cites W2956801365 @default.
- W4293536249 cites W2963451564 @default.
- W4293536249 cites W2963838685 @default.
- W4293536249 cites W2990396912 @default.
- W4293536249 cites W2996227408 @default.
- W4293536249 cites W2996331473 @default.
- W4293536249 cites W3009221956 @default.
- W4293536249 cites W3011915764 @default.
- W4293536249 cites W3069400403 @default.
- W4293536249 cites W3091508658 @default.
- W4293536249 cites W3115225613 @default.
- W4293536249 cites W3120242336 @default.
- W4293536249 cites W3135221267 @default.
- W4293536249 cites W3135340083 @default.
- W4293536249 cites W3182600456 @default.
- W4293536249 cites W3187478762 @default.
- W4293536249 cites W3196747467 @default.
- W4293536249 cites W3209624718 @default.
- W4293536249 cites W4206056942 @default.
- W4293536249 cites W4206346441 @default.
- W4293536249 cites W4285033894 @default.
- W4293536249 cites W4312793604 @default.
- W4293536249 cites W73877600 @default.
- W4293536249 doi "https://doi.org/10.1016/j.entcom.2022.100518" @default.
- W4293536249 hasPublicationYear "2023" @default.
- W4293536249 type Work @default.
- W4293536249 citedByCount "6" @default.
- W4293536249 countsByYear W42935362492023 @default.
- W4293536249 crossrefType "journal-article" @default.
- W4293536249 hasAuthorship W4293536249A5023237149 @default.
- W4293536249 hasAuthorship W4293536249A5046881016 @default.
- W4293536249 hasAuthorship W4293536249A5081410795 @default.
- W4293536249 hasConcept C108583219 @default.
- W4293536249 hasConcept C111472728 @default.
- W4293536249 hasConcept C136815107 @default.
- W4293536249 hasConcept C138885662 @default.
- W4293536249 hasConcept C14166107 @default.
- W4293536249 hasConcept C154945302 @default.
- W4293536249 hasConcept C204321447 @default.
- W4293536249 hasConcept C2524010 @default.
- W4293536249 hasConcept C26517878 @default.
- W4293536249 hasConcept C2776527531 @default.
- W4293536249 hasConcept C28490314 @default.