Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293546472> ?p ?o ?g. }
- W4293546472 endingPage "6501" @default.
- W4293546472 startingPage "6501" @default.
- W4293546472 abstract "Among researchers using traditional and new machine learning and deep learning techniques, 2D medical image segmentation models are popular. Additionally, 3D volumetric data recently became more accessible, as a result of the high number of studies conducted in recent years regarding the creation of 3D volumes. Using these 3D data, researchers have begun conducting research on creating 3D segmentation models, such as brain tumor segmentation and classification. Since a higher number of crucial features can be extracted using 3D data than 2D data, 3D brain tumor detection models have increased in popularity among researchers. Until now, various significant research works have focused on the 3D version of the U-Net and other popular models, such as 3D U-Net and V-Net, while doing superior research works. In this study, we used 3D brain image data and created a new architecture based on a 3D U-Net model that uses multiple skip connections with cost-efficient pretrained 3D MobileNetV2 blocks and attention modules. These pretrained MobileNetV2 blocks assist our architecture by providing smaller parameters to maintain operable model size in terms of our computational capability and help the model to converge faster. We added additional skip connections between the encoder and decoder blocks to ease the exchange of extracted features between the two blocks, which resulted in the maximum use of the features. We also used attention modules to filter out irrelevant features coming through the skip connections and, thus, preserved more computational power while achieving improved accuracy." @default.
- W4293546472 created "2022-08-30" @default.
- W4293546472 creator A5026267523 @default.
- W4293546472 creator A5036343089 @default.
- W4293546472 creator A5057693897 @default.
- W4293546472 date "2022-08-29" @default.
- W4293546472 modified "2023-10-14" @default.
- W4293546472 title "Attention 3D U-Net with Multiple Skip Connections for Segmentation of Brain Tumor Images" @default.
- W4293546472 cites W1641498739 @default.
- W4293546472 cites W1884191083 @default.
- W4293546472 cites W2160754664 @default.
- W4293546472 cites W2310992461 @default.
- W4293546472 cites W2507737581 @default.
- W4293546472 cites W2608353599 @default.
- W4293546472 cites W2612344367 @default.
- W4293546472 cites W2734349601 @default.
- W4293546472 cites W2751069891 @default.
- W4293546472 cites W2774595495 @default.
- W4293546472 cites W2791155853 @default.
- W4293546472 cites W2799597343 @default.
- W4293546472 cites W2884436604 @default.
- W4293546472 cites W2915771504 @default.
- W4293546472 cites W2924134239 @default.
- W4293546472 cites W2949381166 @default.
- W4293546472 cites W2962914239 @default.
- W4293546472 cites W2963499153 @default.
- W4293546472 cites W2989403759 @default.
- W4293546472 cites W2990335373 @default.
- W4293546472 cites W2999697569 @default.
- W4293546472 cites W3013630101 @default.
- W4293546472 cites W3024062944 @default.
- W4293546472 cites W3033471811 @default.
- W4293546472 cites W3048948626 @default.
- W4293546472 cites W3103842943 @default.
- W4293546472 cites W3110095155 @default.
- W4293546472 cites W3118601174 @default.
- W4293546472 cites W3131151690 @default.
- W4293546472 cites W3134949884 @default.
- W4293546472 cites W3164083096 @default.
- W4293546472 cites W3202825385 @default.
- W4293546472 cites W3204666784 @default.
- W4293546472 cites W3217600605 @default.
- W4293546472 cites W4200272406 @default.
- W4293546472 cites W4205555939 @default.
- W4293546472 cites W4224936685 @default.
- W4293546472 cites W4283080861 @default.
- W4293546472 cites W4385245566 @default.
- W4293546472 doi "https://doi.org/10.3390/s22176501" @default.
- W4293546472 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36080958" @default.
- W4293546472 hasPublicationYear "2022" @default.
- W4293546472 type Work @default.
- W4293546472 citedByCount "21" @default.
- W4293546472 countsByYear W42935464722022 @default.
- W4293546472 countsByYear W42935464722023 @default.
- W4293546472 crossrefType "journal-article" @default.
- W4293546472 hasAuthorship W4293546472A5026267523 @default.
- W4293546472 hasAuthorship W4293546472A5036343089 @default.
- W4293546472 hasAuthorship W4293546472A5057693897 @default.
- W4293546472 hasBestOaLocation W42935464721 @default.
- W4293546472 hasConcept C106131492 @default.
- W4293546472 hasConcept C108583219 @default.
- W4293546472 hasConcept C111919701 @default.
- W4293546472 hasConcept C118505674 @default.
- W4293546472 hasConcept C119857082 @default.
- W4293546472 hasConcept C153180895 @default.
- W4293546472 hasConcept C154945302 @default.
- W4293546472 hasConcept C31972630 @default.
- W4293546472 hasConcept C41008148 @default.
- W4293546472 hasConcept C89600930 @default.
- W4293546472 hasConceptScore W4293546472C106131492 @default.
- W4293546472 hasConceptScore W4293546472C108583219 @default.
- W4293546472 hasConceptScore W4293546472C111919701 @default.
- W4293546472 hasConceptScore W4293546472C118505674 @default.
- W4293546472 hasConceptScore W4293546472C119857082 @default.
- W4293546472 hasConceptScore W4293546472C153180895 @default.
- W4293546472 hasConceptScore W4293546472C154945302 @default.
- W4293546472 hasConceptScore W4293546472C31972630 @default.
- W4293546472 hasConceptScore W4293546472C41008148 @default.
- W4293546472 hasConceptScore W4293546472C89600930 @default.
- W4293546472 hasIssue "17" @default.
- W4293546472 hasLocation W42935464721 @default.
- W4293546472 hasLocation W42935464722 @default.
- W4293546472 hasLocation W42935464723 @default.
- W4293546472 hasOpenAccess W4293546472 @default.
- W4293546472 hasPrimaryLocation W42935464721 @default.
- W4293546472 hasRelatedWork W2790662084 @default.
- W4293546472 hasRelatedWork W3014300295 @default.
- W4293546472 hasRelatedWork W3164822677 @default.
- W4293546472 hasRelatedWork W4223943233 @default.
- W4293546472 hasRelatedWork W4225161397 @default.
- W4293546472 hasRelatedWork W4312200629 @default.
- W4293546472 hasRelatedWork W4360585206 @default.
- W4293546472 hasRelatedWork W4364306694 @default.
- W4293546472 hasRelatedWork W4380075502 @default.
- W4293546472 hasRelatedWork W4380086463 @default.
- W4293546472 hasVolume "22" @default.
- W4293546472 isParatext "false" @default.
- W4293546472 isRetracted "false" @default.