Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293552891> ?p ?o ?g. }
- W4293552891 endingPage "117275" @default.
- W4293552891 startingPage "117275" @default.
- W4293552891 abstract "Damage detection inevitably involves uncertainties originated from measurement noise and modeling error. It may cause incorrect damage detection results if not appropriately treating uncertainties. To this end, vibration-based Bayesian model updating (VBMU) is developed to utilize vibration responses or modal parameters to estimate structural parameters and the associated uncertainties of those estimates. However, traditional VBMU often assumes that mass is well known and invariant because simultaneous identification of mass and stiffness may yield an unidentifiable problem due to the coupling effect of the mass and stiffness. In addition, the posterior PDF in VBMU is usually approximated by single Markov Chain Monte Carlo (MCMC), leading to a low acceptance rate and limited capability for complex structures. This paper proposed a novel VBMU to address the coupling effect and identify mass and stiffness by adding known mass. Two vibration data sets are acquired from original and modified systems with added mass, giving the new characteristic equations. Then, the posterior PDF is reformulated by measured data and predicted counterparts from new characteristic equations. For efficiently approximating the posterior PDF, Differential Evolutionary Adaptive Metropolis (DREAM) algorithm is adopted to draw samples by running multiple Markov chains parallelly to enhance acceptance rate and sufficiently explore possible solutions. Finally, a numerical example with a ten-story shear building and a laboratory-scale three-story frame structure are utilized to demonstrate the efficacy of the proposed VBMU framework. The results show that the proposed method can successfully identify both mass and stiffness, and their uncertainties. Reliable probabilistic damage detection can also be achieved." @default.
- W4293552891 created "2022-08-30" @default.
- W4293552891 creator A5017764574 @default.
- W4293552891 creator A5073923961 @default.
- W4293552891 date "2022-10-01" @default.
- W4293552891 modified "2023-10-10" @default.
- W4293552891 title "Probabilistic damage detection and identification of coupled structural parameters using Bayesian model updating with added mass" @default.
- W4293552891 cites W1968781827 @default.
- W4293552891 cites W1972983673 @default.
- W4293552891 cites W1973576548 @default.
- W4293552891 cites W1978309254 @default.
- W4293552891 cites W1997129662 @default.
- W4293552891 cites W2024018375 @default.
- W4293552891 cites W2025020978 @default.
- W4293552891 cites W2025328824 @default.
- W4293552891 cites W2064633509 @default.
- W4293552891 cites W2094837206 @default.
- W4293552891 cites W2102962278 @default.
- W4293552891 cites W2119179880 @default.
- W4293552891 cites W2146495904 @default.
- W4293552891 cites W2167339360 @default.
- W4293552891 cites W2173126837 @default.
- W4293552891 cites W2214671852 @default.
- W4293552891 cites W2531310516 @default.
- W4293552891 cites W2597030573 @default.
- W4293552891 cites W2614439541 @default.
- W4293552891 cites W2791210712 @default.
- W4293552891 cites W2795395159 @default.
- W4293552891 cites W2811505159 @default.
- W4293552891 cites W2887476898 @default.
- W4293552891 cites W2895602999 @default.
- W4293552891 cites W2946627648 @default.
- W4293552891 cites W2954663106 @default.
- W4293552891 cites W2999918623 @default.
- W4293552891 cites W3008693672 @default.
- W4293552891 cites W3033288198 @default.
- W4293552891 cites W3046226815 @default.
- W4293552891 cites W3046672252 @default.
- W4293552891 cites W3047647728 @default.
- W4293552891 cites W3082903658 @default.
- W4293552891 cites W3090358318 @default.
- W4293552891 cites W3102444230 @default.
- W4293552891 cites W3122103105 @default.
- W4293552891 cites W3134311035 @default.
- W4293552891 cites W3160195356 @default.
- W4293552891 cites W3166261934 @default.
- W4293552891 cites W3184254116 @default.
- W4293552891 cites W3203195683 @default.
- W4293552891 doi "https://doi.org/10.1016/j.jsv.2022.117275" @default.
- W4293552891 hasPublicationYear "2022" @default.
- W4293552891 type Work @default.
- W4293552891 citedByCount "6" @default.
- W4293552891 countsByYear W42935528912022 @default.
- W4293552891 countsByYear W42935528912023 @default.
- W4293552891 crossrefType "journal-article" @default.
- W4293552891 hasAuthorship W4293552891A5017764574 @default.
- W4293552891 hasAuthorship W4293552891A5073923961 @default.
- W4293552891 hasBestOaLocation W42935528912 @default.
- W4293552891 hasConcept C105795698 @default.
- W4293552891 hasConcept C107673813 @default.
- W4293552891 hasConcept C111350023 @default.
- W4293552891 hasConcept C11413529 @default.
- W4293552891 hasConcept C119857082 @default.
- W4293552891 hasConcept C121332964 @default.
- W4293552891 hasConcept C127413603 @default.
- W4293552891 hasConcept C154945302 @default.
- W4293552891 hasConcept C185592680 @default.
- W4293552891 hasConcept C188027245 @default.
- W4293552891 hasConcept C19499675 @default.
- W4293552891 hasConcept C198394728 @default.
- W4293552891 hasConcept C2779372316 @default.
- W4293552891 hasConcept C32230216 @default.
- W4293552891 hasConcept C33923547 @default.
- W4293552891 hasConcept C41008148 @default.
- W4293552891 hasConcept C49937458 @default.
- W4293552891 hasConcept C62520636 @default.
- W4293552891 hasConcept C66938386 @default.
- W4293552891 hasConcept C71139939 @default.
- W4293552891 hasConcept C98763669 @default.
- W4293552891 hasConceptScore W4293552891C105795698 @default.
- W4293552891 hasConceptScore W4293552891C107673813 @default.
- W4293552891 hasConceptScore W4293552891C111350023 @default.
- W4293552891 hasConceptScore W4293552891C11413529 @default.
- W4293552891 hasConceptScore W4293552891C119857082 @default.
- W4293552891 hasConceptScore W4293552891C121332964 @default.
- W4293552891 hasConceptScore W4293552891C127413603 @default.
- W4293552891 hasConceptScore W4293552891C154945302 @default.
- W4293552891 hasConceptScore W4293552891C185592680 @default.
- W4293552891 hasConceptScore W4293552891C188027245 @default.
- W4293552891 hasConceptScore W4293552891C19499675 @default.
- W4293552891 hasConceptScore W4293552891C198394728 @default.
- W4293552891 hasConceptScore W4293552891C2779372316 @default.
- W4293552891 hasConceptScore W4293552891C32230216 @default.
- W4293552891 hasConceptScore W4293552891C33923547 @default.
- W4293552891 hasConceptScore W4293552891C41008148 @default.
- W4293552891 hasConceptScore W4293552891C49937458 @default.
- W4293552891 hasConceptScore W4293552891C62520636 @default.
- W4293552891 hasConceptScore W4293552891C66938386 @default.