Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293555114> ?p ?o ?g. }
- W4293555114 abstract "Machine learning techniques have lately attracted a lot of attention for their potential to execute expert-level clinical tasks, notably in the area of medical image analysis. Chest radiography is one of the most often utilized diagnostic imaging modalities in medical practice, and it necessitates timely coverage regarding the presence of probable abnormalities and disease diagnoses in the images. Computer-aided solutions for the identification of chest illness using chest radiography are being developed in medical imaging research. However, accurate localization and categorization of specific disorders in chest X-ray images is still a challenging problem due to the complex nature of radiographs, presence of different distortions, high inter-class similarities, and intra-class variations in abnormalities. In this work, we have presented an Artificial Intelligence (AI)-enabled fully automated approach using an end-to-end deep learning technique to improve the accuracy of thoracic illness diagnosis. We proposed AI-CenterNet CXR, a customized CenterNet model with an improved feature extraction network for the recognition of multi-label chest diseases. The enhanced backbone computes deep key points that improve the abnormality localization accuracy and, thus, overall disease classification performance. Moreover, the proposed architecture is lightweight and computationally efficient in comparison to the original CenterNet model. We have performed extensive experimentation to validate the effectiveness of the proposed technique using the National Institutes of Health (NIH) Chest X-ray dataset. Our method achieved an overall Area Under the Curve (AUC) of 0.888 and an average IOU of 0.801 to detect and classify the eight types of chest abnormalities. Both the qualitative and quantitative findings reveal that the suggested approach outperforms the existing methods, indicating the efficacy of our approach." @default.
- W4293555114 created "2022-08-30" @default.
- W4293555114 creator A5000682685 @default.
- W4293555114 creator A5074765021 @default.
- W4293555114 date "2022-08-30" @default.
- W4293555114 modified "2023-10-14" @default.
- W4293555114 title "AI-CenterNet CXR: An artificial intelligence (AI) enabled system for localization and classification of chest X-ray disease" @default.
- W4293555114 cites W1536680647 @default.
- W4293555114 cites W2101926813 @default.
- W4293555114 cites W2131774270 @default.
- W4293555114 cites W2412479940 @default.
- W4293555114 cites W2558580397 @default.
- W4293555114 cites W2794026873 @default.
- W4293555114 cites W2887196013 @default.
- W4293555114 cites W2919011445 @default.
- W4293555114 cites W2922297682 @default.
- W4293555114 cites W2952817546 @default.
- W4293555114 cites W2956897601 @default.
- W4293555114 cites W2962838801 @default.
- W4293555114 cites W2962975664 @default.
- W4293555114 cites W2963373823 @default.
- W4293555114 cites W2963967185 @default.
- W4293555114 cites W2979001271 @default.
- W4293555114 cites W2979418973 @default.
- W4293555114 cites W2983132969 @default.
- W4293555114 cites W2987902602 @default.
- W4293555114 cites W2993044507 @default.
- W4293555114 cites W3012303644 @default.
- W4293555114 cites W3016172145 @default.
- W4293555114 cites W3033710648 @default.
- W4293555114 cites W3036241636 @default.
- W4293555114 cites W3080406710 @default.
- W4293555114 cites W3097211536 @default.
- W4293555114 cites W3101156210 @default.
- W4293555114 cites W3110181119 @default.
- W4293555114 cites W3113367126 @default.
- W4293555114 cites W3126581477 @default.
- W4293555114 cites W3127020108 @default.
- W4293555114 cites W3132061261 @default.
- W4293555114 cites W3138985726 @default.
- W4293555114 cites W3145512623 @default.
- W4293555114 cites W3158994149 @default.
- W4293555114 cites W3162228145 @default.
- W4293555114 cites W3170108663 @default.
- W4293555114 cites W3191164398 @default.
- W4293555114 cites W3193364948 @default.
- W4293555114 cites W3195373382 @default.
- W4293555114 cites W3198906447 @default.
- W4293555114 cites W3201857520 @default.
- W4293555114 cites W3204243169 @default.
- W4293555114 cites W3204669600 @default.
- W4293555114 cites W4200052220 @default.
- W4293555114 cites W4206363386 @default.
- W4293555114 cites W4206750494 @default.
- W4293555114 cites W4210383482 @default.
- W4293555114 cites W4210992544 @default.
- W4293555114 cites W4212907713 @default.
- W4293555114 cites W4212983134 @default.
- W4293555114 cites W4213025618 @default.
- W4293555114 cites W4220913575 @default.
- W4293555114 cites W4224215610 @default.
- W4293555114 cites W4224249127 @default.
- W4293555114 cites W4226197703 @default.
- W4293555114 cites W4247347002 @default.
- W4293555114 cites W4300485340 @default.
- W4293555114 cites W639708223 @default.
- W4293555114 doi "https://doi.org/10.3389/fmed.2022.955765" @default.
- W4293555114 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36111113" @default.
- W4293555114 hasPublicationYear "2022" @default.
- W4293555114 type Work @default.
- W4293555114 citedByCount "0" @default.
- W4293555114 crossrefType "journal-article" @default.
- W4293555114 hasAuthorship W4293555114A5000682685 @default.
- W4293555114 hasAuthorship W4293555114A5074765021 @default.
- W4293555114 hasBestOaLocation W42935551141 @default.
- W4293555114 hasConcept C108583219 @default.
- W4293555114 hasConcept C116834253 @default.
- W4293555114 hasConcept C118552586 @default.
- W4293555114 hasConcept C119857082 @default.
- W4293555114 hasConcept C126838900 @default.
- W4293555114 hasConcept C138885662 @default.
- W4293555114 hasConcept C153180895 @default.
- W4293555114 hasConcept C154945302 @default.
- W4293555114 hasConcept C2776401178 @default.
- W4293555114 hasConcept C2779549770 @default.
- W4293555114 hasConcept C2780226545 @default.
- W4293555114 hasConcept C31601959 @default.
- W4293555114 hasConcept C36454342 @default.
- W4293555114 hasConcept C41008148 @default.
- W4293555114 hasConcept C41895202 @default.
- W4293555114 hasConcept C50965678 @default.
- W4293555114 hasConcept C534262118 @default.
- W4293555114 hasConcept C59822182 @default.
- W4293555114 hasConcept C71924100 @default.
- W4293555114 hasConcept C81363708 @default.
- W4293555114 hasConcept C86803240 @default.
- W4293555114 hasConceptScore W4293555114C108583219 @default.
- W4293555114 hasConceptScore W4293555114C116834253 @default.
- W4293555114 hasConceptScore W4293555114C118552586 @default.
- W4293555114 hasConceptScore W4293555114C119857082 @default.