Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293559814> ?p ?o ?g. }
- W4293559814 endingPage "e01372" @default.
- W4293559814 startingPage "e01372" @default.
- W4293559814 abstract "Monitoring construction activities is an important task for efficiency in construction site operations thus the topic received a fair amount of attention in the literature. Optimizing construction site operations by monitoring and detecting various tasks is dependent on the size of the construction field, which determines the tools that can be used for the job. A monitoring task can be performed with high efficiency through image classification algorithms by training the algorithms to detect construction machinery. If the area of monitoring is larger, such as the task of detecting construction related operations in a large infrastructural construction, using drone images might become inefficient. We aimed to take a first step towards a cost-efficient monitoring system specifically for construction activities that cover large territories. Consequently, satellite image classification has been performed for construction machinery detection in this study. We utilized different versions of well-established convolutional neural network architectures as backbone for the transfer learning method and their performances are evaluated. Finally, the best performing models are determined as DenseNet161 and ResNet101 with 0.919 and 0.903 test accuracies, respectively. DenseNet161 model was discussed in terms of its accuracy and efficiency in a case study to detect illegal aggregate mining activity through the basin of Thamirabarani River." @default.
- W4293559814 created "2022-08-30" @default.
- W4293559814 creator A5020857737 @default.
- W4293559814 creator A5026767245 @default.
- W4293559814 date "2022-12-01" @default.
- W4293559814 modified "2023-10-01" @default.
- W4293559814 title "Efficiency of convolutional neural networks (CNN) based image classification for monitoring construction related activities: A case study on aggregate mining for concrete production" @default.
- W4293559814 cites W1861492603 @default.
- W4293559814 cites W2108598243 @default.
- W4293559814 cites W2124386111 @default.
- W4293559814 cites W2133251833 @default.
- W4293559814 cites W2253590344 @default.
- W4293559814 cites W2549139847 @default.
- W4293559814 cites W2743142445 @default.
- W4293559814 cites W2762595912 @default.
- W4293559814 cites W2803862859 @default.
- W4293559814 cites W2883157181 @default.
- W4293559814 cites W2889392261 @default.
- W4293559814 cites W2963163009 @default.
- W4293559814 cites W2963446712 @default.
- W4293559814 cites W2981533942 @default.
- W4293559814 cites W2999473031 @default.
- W4293559814 cites W3000491742 @default.
- W4293559814 cites W3006042321 @default.
- W4293559814 cites W3020888440 @default.
- W4293559814 cites W3022140654 @default.
- W4293559814 cites W3081962234 @default.
- W4293559814 cites W3111167009 @default.
- W4293559814 cites W3119180266 @default.
- W4293559814 cites W3119805519 @default.
- W4293559814 cites W3132859298 @default.
- W4293559814 cites W3158248333 @default.
- W4293559814 cites W3193595475 @default.
- W4293559814 cites W3193607149 @default.
- W4293559814 cites W3197471398 @default.
- W4293559814 cites W3198331430 @default.
- W4293559814 cites W3199801360 @default.
- W4293559814 cites W3200355840 @default.
- W4293559814 cites W3201182420 @default.
- W4293559814 doi "https://doi.org/10.1016/j.cscm.2022.e01372" @default.
- W4293559814 hasPublicationYear "2022" @default.
- W4293559814 type Work @default.
- W4293559814 citedByCount "1" @default.
- W4293559814 countsByYear W42935598142022 @default.
- W4293559814 crossrefType "journal-article" @default.
- W4293559814 hasAuthorship W4293559814A5020857737 @default.
- W4293559814 hasAuthorship W4293559814A5026767245 @default.
- W4293559814 hasBestOaLocation W42935598141 @default.
- W4293559814 hasConcept C115961682 @default.
- W4293559814 hasConcept C119857082 @default.
- W4293559814 hasConcept C124101348 @default.
- W4293559814 hasConcept C127413603 @default.
- W4293559814 hasConcept C150899416 @default.
- W4293559814 hasConcept C154945302 @default.
- W4293559814 hasConcept C159985019 @default.
- W4293559814 hasConcept C192562407 @default.
- W4293559814 hasConcept C201995342 @default.
- W4293559814 hasConcept C202444582 @default.
- W4293559814 hasConcept C2780451532 @default.
- W4293559814 hasConcept C33923547 @default.
- W4293559814 hasConcept C41008148 @default.
- W4293559814 hasConcept C4679612 @default.
- W4293559814 hasConcept C54355233 @default.
- W4293559814 hasConcept C59519942 @default.
- W4293559814 hasConcept C81363708 @default.
- W4293559814 hasConcept C86803240 @default.
- W4293559814 hasConcept C9652623 @default.
- W4293559814 hasConceptScore W4293559814C115961682 @default.
- W4293559814 hasConceptScore W4293559814C119857082 @default.
- W4293559814 hasConceptScore W4293559814C124101348 @default.
- W4293559814 hasConceptScore W4293559814C127413603 @default.
- W4293559814 hasConceptScore W4293559814C150899416 @default.
- W4293559814 hasConceptScore W4293559814C154945302 @default.
- W4293559814 hasConceptScore W4293559814C159985019 @default.
- W4293559814 hasConceptScore W4293559814C192562407 @default.
- W4293559814 hasConceptScore W4293559814C201995342 @default.
- W4293559814 hasConceptScore W4293559814C202444582 @default.
- W4293559814 hasConceptScore W4293559814C2780451532 @default.
- W4293559814 hasConceptScore W4293559814C33923547 @default.
- W4293559814 hasConceptScore W4293559814C41008148 @default.
- W4293559814 hasConceptScore W4293559814C4679612 @default.
- W4293559814 hasConceptScore W4293559814C54355233 @default.
- W4293559814 hasConceptScore W4293559814C59519942 @default.
- W4293559814 hasConceptScore W4293559814C81363708 @default.
- W4293559814 hasConceptScore W4293559814C86803240 @default.
- W4293559814 hasConceptScore W4293559814C9652623 @default.
- W4293559814 hasLocation W42935598141 @default.
- W4293559814 hasLocation W42935598142 @default.
- W4293559814 hasOpenAccess W4293559814 @default.
- W4293559814 hasPrimaryLocation W42935598141 @default.
- W4293559814 hasRelatedWork W3012393889 @default.
- W4293559814 hasRelatedWork W3018421652 @default.
- W4293559814 hasRelatedWork W3021430260 @default.
- W4293559814 hasRelatedWork W3027997911 @default.
- W4293559814 hasRelatedWork W3091976719 @default.
- W4293559814 hasRelatedWork W3135818718 @default.
- W4293559814 hasRelatedWork W3192840557 @default.
- W4293559814 hasRelatedWork W4287776258 @default.