Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293565763> ?p ?o ?g. }
- W4293565763 endingPage "105010" @default.
- W4293565763 startingPage "105010" @default.
- W4293565763 abstract "The Chemical Master Equation (CME) provides an accurate description of stochastic biochemical reaction networks in well-mixed conditions, but it cannot be solved analytically for most systems of practical interest. Although Monte Carlo methods provide a principled means to probe system dynamics, the large number of simulations typically required can render the estimation of molecule number distributions and other quantities infeasible. In this article, we aim to leverage the representational power of neural networks to approximate the solutions of the CME and propose a framework for the Neural Estimation of Stochastic Simulations for Inference and Exploration (Nessie). Our approach is based on training neural networks to learn the distributions predicted by the CME from relatively few stochastic simulations. We show on biologically relevant examples that simple neural networks with one hidden layer can capture highly complex distributions across parameter space, thereby accelerating computationally intensive tasks such as parameter exploration and inference." @default.
- W4293565763 created "2022-08-30" @default.
- W4293565763 creator A5007883552 @default.
- W4293565763 creator A5029788536 @default.
- W4293565763 creator A5034980817 @default.
- W4293565763 date "2022-09-01" @default.
- W4293565763 modified "2023-10-16" @default.
- W4293565763 title "Approximating solutions of the Chemical Master equation using neural networks" @default.
- W4293565763 cites W1490602343 @default.
- W4293565763 cites W1968856189 @default.
- W4293565763 cites W1977055260 @default.
- W4293565763 cites W1978182054 @default.
- W4293565763 cites W1988115241 @default.
- W4293565763 cites W2020176076 @default.
- W4293565763 cites W2031822229 @default.
- W4293565763 cites W2042321087 @default.
- W4293565763 cites W2044692345 @default.
- W4293565763 cites W2053003053 @default.
- W4293565763 cites W2053460598 @default.
- W4293565763 cites W2060662954 @default.
- W4293565763 cites W2066594542 @default.
- W4293565763 cites W2068751516 @default.
- W4293565763 cites W2089961542 @default.
- W4293565763 cites W2092309107 @default.
- W4293565763 cites W2093625674 @default.
- W4293565763 cites W2096705138 @default.
- W4293565763 cites W2105512180 @default.
- W4293565763 cites W2115102378 @default.
- W4293565763 cites W2115368299 @default.
- W4293565763 cites W2124149894 @default.
- W4293565763 cites W2125621954 @default.
- W4293565763 cites W2128506325 @default.
- W4293565763 cites W2130771441 @default.
- W4293565763 cites W2134759932 @default.
- W4293565763 cites W2138163236 @default.
- W4293565763 cites W2139629468 @default.
- W4293565763 cites W2158469604 @default.
- W4293565763 cites W2167154952 @default.
- W4293565763 cites W2171280873 @default.
- W4293565763 cites W2311607323 @default.
- W4293565763 cites W2502949459 @default.
- W4293565763 cites W2518662817 @default.
- W4293565763 cites W2619381903 @default.
- W4293565763 cites W2801128564 @default.
- W4293565763 cites W2923537029 @default.
- W4293565763 cites W2976185208 @default.
- W4293565763 cites W2999914121 @default.
- W4293565763 cites W3007264533 @default.
- W4293565763 cites W3011408924 @default.
- W4293565763 cites W3038366933 @default.
- W4293565763 cites W3039310193 @default.
- W4293565763 cites W3046663842 @default.
- W4293565763 cites W3103722330 @default.
- W4293565763 cites W3104744823 @default.
- W4293565763 cites W3125980488 @default.
- W4293565763 cites W3137595586 @default.
- W4293565763 cites W3160417254 @default.
- W4293565763 cites W3190842559 @default.
- W4293565763 cites W3202911542 @default.
- W4293565763 cites W3216366002 @default.
- W4293565763 cites W4207079114 @default.
- W4293565763 cites W4285098835 @default.
- W4293565763 doi "https://doi.org/10.1016/j.isci.2022.105010" @default.
- W4293565763 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36117994" @default.
- W4293565763 hasPublicationYear "2022" @default.
- W4293565763 type Work @default.
- W4293565763 citedByCount "11" @default.
- W4293565763 countsByYear W42935657632023 @default.
- W4293565763 crossrefType "journal-article" @default.
- W4293565763 hasAuthorship W4293565763A5007883552 @default.
- W4293565763 hasAuthorship W4293565763A5029788536 @default.
- W4293565763 hasAuthorship W4293565763A5034980817 @default.
- W4293565763 hasBestOaLocation W42935657633 @default.
- W4293565763 hasConcept C105795698 @default.
- W4293565763 hasConcept C111472728 @default.
- W4293565763 hasConcept C119857082 @default.
- W4293565763 hasConcept C121332964 @default.
- W4293565763 hasConcept C121864883 @default.
- W4293565763 hasConcept C138885662 @default.
- W4293565763 hasConcept C153083717 @default.
- W4293565763 hasConcept C154945302 @default.
- W4293565763 hasConcept C19499675 @default.
- W4293565763 hasConcept C2776214188 @default.
- W4293565763 hasConcept C2780586882 @default.
- W4293565763 hasConcept C33923547 @default.
- W4293565763 hasConcept C41008148 @default.
- W4293565763 hasConcept C50644808 @default.
- W4293565763 hasConceptScore W4293565763C105795698 @default.
- W4293565763 hasConceptScore W4293565763C111472728 @default.
- W4293565763 hasConceptScore W4293565763C119857082 @default.
- W4293565763 hasConceptScore W4293565763C121332964 @default.
- W4293565763 hasConceptScore W4293565763C121864883 @default.
- W4293565763 hasConceptScore W4293565763C138885662 @default.
- W4293565763 hasConceptScore W4293565763C153083717 @default.
- W4293565763 hasConceptScore W4293565763C154945302 @default.
- W4293565763 hasConceptScore W4293565763C19499675 @default.
- W4293565763 hasConceptScore W4293565763C2776214188 @default.
- W4293565763 hasConceptScore W4293565763C2780586882 @default.