Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293568972> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W4293568972 endingPage "26" @default.
- W4293568972 startingPage "20" @default.
- W4293568972 abstract "Parameter is a value that describe the characteristics of a population. But the parameterof a real data, the value is unknown. To estimate the value of the parameter,there are several methods, which are maximum likelihood estimation method (MLE)and Bayesian parameter estimation method. In Bayesian method, the prior informationis applied to update the current data. The prior is determined based on the informationin the data. This mini thesis is using censored data with exponential distribution, andusing the conjugate prior. Followed by squared error loss function (SELF), the estimatedvalue function ot the λ parameter is ˆλ =α+Σ_{i=1}^{n}δ_{i}β+Σ_{i=1}^{n}t_{i}with α and β are hyperparameters,Σ_{i=1}^{n}δ_{i} is the number of objects that experienced the event and Σ_{i=1}^{n}t_{i} is the numberof the survival time. When the function was applied on Stanford heart transplant data,the value of ˆλ = 0.00089, which means the patient’s failure (death) probability is lowand the patient’s probability to survive is high." @default.
- W4293568972 created "2022-08-30" @default.
- W4293568972 creator A5000104365 @default.
- W4293568972 creator A5067139497 @default.
- W4293568972 creator A5088772306 @default.
- W4293568972 date "2022-08-30" @default.
- W4293568972 modified "2023-09-26" @default.
- W4293568972 title "Metode Bayesian untuk Estimasi Parameter Distribusi Eksponensial pada Data Tersensor" @default.
- W4293568972 doi "https://doi.org/10.21009/jmt.4.2.3" @default.
- W4293568972 hasPublicationYear "2022" @default.
- W4293568972 type Work @default.
- W4293568972 citedByCount "0" @default.
- W4293568972 crossrefType "journal-article" @default.
- W4293568972 hasAuthorship W4293568972A5000104365 @default.
- W4293568972 hasAuthorship W4293568972A5067139497 @default.
- W4293568972 hasAuthorship W4293568972A5088772306 @default.
- W4293568972 hasBestOaLocation W42935689721 @default.
- W4293568972 hasConcept C105795698 @default.
- W4293568972 hasConcept C107673813 @default.
- W4293568972 hasConcept C11413529 @default.
- W4293568972 hasConcept C177769412 @default.
- W4293568972 hasConcept C26004113 @default.
- W4293568972 hasConcept C33923547 @default.
- W4293568972 hasConcept C68022304 @default.
- W4293568972 hasConcept C8642999 @default.
- W4293568972 hasConceptScore W4293568972C105795698 @default.
- W4293568972 hasConceptScore W4293568972C107673813 @default.
- W4293568972 hasConceptScore W4293568972C11413529 @default.
- W4293568972 hasConceptScore W4293568972C177769412 @default.
- W4293568972 hasConceptScore W4293568972C26004113 @default.
- W4293568972 hasConceptScore W4293568972C33923547 @default.
- W4293568972 hasConceptScore W4293568972C68022304 @default.
- W4293568972 hasConceptScore W4293568972C8642999 @default.
- W4293568972 hasIssue "2" @default.
- W4293568972 hasLocation W42935689721 @default.
- W4293568972 hasOpenAccess W4293568972 @default.
- W4293568972 hasPrimaryLocation W42935689721 @default.
- W4293568972 hasRelatedWork W2091068677 @default.
- W4293568972 hasRelatedWork W2098484031 @default.
- W4293568972 hasRelatedWork W2232950091 @default.
- W4293568972 hasRelatedWork W2472610123 @default.
- W4293568972 hasRelatedWork W2539847131 @default.
- W4293568972 hasRelatedWork W2558677930 @default.
- W4293568972 hasRelatedWork W2765193704 @default.
- W4293568972 hasRelatedWork W3143527004 @default.
- W4293568972 hasRelatedWork W3162687250 @default.
- W4293568972 hasRelatedWork W991983494 @default.
- W4293568972 hasVolume "4" @default.
- W4293568972 isParatext "false" @default.
- W4293568972 isRetracted "false" @default.
- W4293568972 workType "article" @default.