Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293578550> ?p ?o ?g. }
- W4293578550 endingPage "106812" @default.
- W4293578550 startingPage "106812" @default.
- W4293578550 abstract "A reliable critical-scenario-based safety assessment of autonomous vehicles in China requires a thorough understanding of complex crash scenarios in Chinese background traffic. Based on actual crashes between a vehicle and a powered two-wheeler (PTW) in China, this study generated the autonomous driving testing scenarios from functional, logical and concrete levels. First, 239 video-recorded crash cases were selected from the China In-depth mobility Safety Study - Traffic Accident (CIMSS-TA) database. Using the k-medoids clustering method, six functional scenarios were generalized according to seven crash characteristics (time of day, road type, road surface, obstruction, motion of vehicle, motion of PTW, relative moving direction and position of PTW with respect to vehicle), which contained two straight road scenarios, two T-junction scenarios and two intersection scenarios. Then, using a trajectory analysis program written by Python, the dangerous time instant of each crash was extracted based on the relative trajectory. According to five dynamic parameters of dangerous time instant, namely vehicle velocity (Vehicle_V), PTW X'-coordinate velocity (PTW_VX'), PTW Y'-coordinate velocity (PTW_VY'), PTW X'-coordinate relative position (PTW_LocX') and PTW Y'-coordinate relative position (PTW_LocY'), a crash trigger scheme was built to remain a case challenging when the involved vehicle is replaced by an autonomous vehicle with completely different maneuvers. Using the kernel density estimation (KDE), the logical scenarios were evolved by calculating the distribution of these dynamic parameters in each cluster. The results showed that there were differences in the distribution of dynamic parameters between six functional scenarios. For instance, the Vehicle_V in the scenario where a vehicle turning right impacts with a right/right rear PTW traveling straight ahead was higher than that in the scenario where a vehicle changing to the left lane impacts with a left/left rear PTW traveling straight ahead, with ranges of (10 km/h, 30 km/h) and (5 km/h, 15 km/h), respectively. Finally, considering the correlation of dynamic parameters, a virtual crash generation approach based on the independent component analysis (ICA) representing the original crashes with independent parameters was proposed to obtain sufficient concrete testing scenarios. The results showed that the statistical characteristics of virtual crashes were consistent with those of original crashes. Therefore, the virtual crash generation approach was effective. And a concrete crossing testing scenario with the crash trigger conditions of Vehicle_V = 26.272 km/h, PTW_VX' = 15.567 km/h, PTW_VY' = -1.670 km/h, PTW_LocX' = -27.265 m and PTW_LocY' = 52. 149 m was especially demonstrated. This study provides a theoretical basis for generating autonomous driving testing scenarios and data support for establishing relevant testing schemes tailored to the traffic environment in China." @default.
- W4293578550 created "2022-08-30" @default.
- W4293578550 creator A5015400278 @default.
- W4293578550 creator A5016227037 @default.
- W4293578550 creator A5021685195 @default.
- W4293578550 creator A5028225483 @default.
- W4293578550 creator A5064042477 @default.
- W4293578550 creator A5072631261 @default.
- W4293578550 creator A5076072512 @default.
- W4293578550 creator A5084887685 @default.
- W4293578550 date "2022-10-01" @default.
- W4293578550 modified "2023-09-30" @default.
- W4293578550 title "Autonomous driving testing scenario generation based on in-depth vehicle-to-powered two-wheeler crash data in China" @default.
- W4293578550 cites W1987971958 @default.
- W4293578550 cites W2080718434 @default.
- W4293578550 cites W2156412225 @default.
- W4293578550 cites W2615547864 @default.
- W4293578550 cites W2742883354 @default.
- W4293578550 cites W2750453589 @default.
- W4293578550 cites W2785233781 @default.
- W4293578550 cites W2787924985 @default.
- W4293578550 cites W2790614647 @default.
- W4293578550 cites W2790792227 @default.
- W4293578550 cites W2795445776 @default.
- W4293578550 cites W2896196835 @default.
- W4293578550 cites W2907431906 @default.
- W4293578550 cites W2912798476 @default.
- W4293578550 cites W2952924054 @default.
- W4293578550 cites W2954555852 @default.
- W4293578550 cites W2969291609 @default.
- W4293578550 cites W2979443982 @default.
- W4293578550 cites W2997293134 @default.
- W4293578550 cites W3041038022 @default.
- W4293578550 cites W3091887300 @default.
- W4293578550 cites W3112002415 @default.
- W4293578550 cites W3138181334 @default.
- W4293578550 cites W3157959296 @default.
- W4293578550 cites W3182736272 @default.
- W4293578550 cites W3189582709 @default.
- W4293578550 cites W4283579558 @default.
- W4293578550 doi "https://doi.org/10.1016/j.aap.2022.106812" @default.
- W4293578550 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36054982" @default.
- W4293578550 hasPublicationYear "2022" @default.
- W4293578550 type Work @default.
- W4293578550 citedByCount "1" @default.
- W4293578550 countsByYear W42935785502023 @default.
- W4293578550 crossrefType "journal-article" @default.
- W4293578550 hasAuthorship W4293578550A5015400278 @default.
- W4293578550 hasAuthorship W4293578550A5016227037 @default.
- W4293578550 hasAuthorship W4293578550A5021685195 @default.
- W4293578550 hasAuthorship W4293578550A5028225483 @default.
- W4293578550 hasAuthorship W4293578550A5064042477 @default.
- W4293578550 hasAuthorship W4293578550A5072631261 @default.
- W4293578550 hasAuthorship W4293578550A5076072512 @default.
- W4293578550 hasAuthorship W4293578550A5084887685 @default.
- W4293578550 hasConcept C10138342 @default.
- W4293578550 hasConcept C105795698 @default.
- W4293578550 hasConcept C121332964 @default.
- W4293578550 hasConcept C121704057 @default.
- W4293578550 hasConcept C1276947 @default.
- W4293578550 hasConcept C13662910 @default.
- W4293578550 hasConcept C162324750 @default.
- W4293578550 hasConcept C183469790 @default.
- W4293578550 hasConcept C185429906 @default.
- W4293578550 hasConcept C198082294 @default.
- W4293578550 hasConcept C199360897 @default.
- W4293578550 hasConcept C33923547 @default.
- W4293578550 hasConcept C38652104 @default.
- W4293578550 hasConcept C41008148 @default.
- W4293578550 hasConcept C44154836 @default.
- W4293578550 hasConcept C71134354 @default.
- W4293578550 hasConceptScore W4293578550C10138342 @default.
- W4293578550 hasConceptScore W4293578550C105795698 @default.
- W4293578550 hasConceptScore W4293578550C121332964 @default.
- W4293578550 hasConceptScore W4293578550C121704057 @default.
- W4293578550 hasConceptScore W4293578550C1276947 @default.
- W4293578550 hasConceptScore W4293578550C13662910 @default.
- W4293578550 hasConceptScore W4293578550C162324750 @default.
- W4293578550 hasConceptScore W4293578550C183469790 @default.
- W4293578550 hasConceptScore W4293578550C185429906 @default.
- W4293578550 hasConceptScore W4293578550C198082294 @default.
- W4293578550 hasConceptScore W4293578550C199360897 @default.
- W4293578550 hasConceptScore W4293578550C33923547 @default.
- W4293578550 hasConceptScore W4293578550C38652104 @default.
- W4293578550 hasConceptScore W4293578550C41008148 @default.
- W4293578550 hasConceptScore W4293578550C44154836 @default.
- W4293578550 hasConceptScore W4293578550C71134354 @default.
- W4293578550 hasLocation W42935785501 @default.
- W4293578550 hasLocation W42935785502 @default.
- W4293578550 hasOpenAccess W4293578550 @default.
- W4293578550 hasPrimaryLocation W42935785501 @default.
- W4293578550 hasRelatedWork W1558985077 @default.
- W4293578550 hasRelatedWork W1590484355 @default.
- W4293578550 hasRelatedWork W2033004768 @default.
- W4293578550 hasRelatedWork W2037691914 @default.
- W4293578550 hasRelatedWork W2060907096 @default.
- W4293578550 hasRelatedWork W2945599376 @default.
- W4293578550 hasRelatedWork W3036072450 @default.