Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293660908> ?p ?o ?g. }
- W4293660908 endingPage "4233" @default.
- W4293660908 startingPage "4233" @default.
- W4293660908 abstract "Selective logging is a major cause of forest degradation in the tropics, but its precise scale, location and timing are not known as wide-area, automated remote sensing methods are not yet available at this scale. This limits the abilities of governments to police illegal logging, or monitor (and thus receive payments for) reductions in degradation. Sentinel-1, a C-band Synthetic Aperture Radar satellite mission with a 12-day repeat time across the tropics, is a promising tool for this due to the known appearance of shadows in images where canopy trees are removed. However, previous work has relied on optical satellite data for calibration and validation, which has inherent uncertainties, leaving unanswered questions about the minimum magnitude and area of canopy loss this method can detect. Here, we use a novel bi-temporal LiDAR dataset in a forest degradation experiment in Gabon to show that canopy gaps as small as 0.02 ha (two 10 m × 10 m pixels) can be detected by Sentinel-1. The accuracy of our algorithm was highest when using a timeseries of 50 images over 20 months and no multilooking. With these parameters, canopy gaps in our study site were detected with a false alarm rate of 6.2%, a missed detection rate of 12.2%, and were assigned disturbance dates that were a good qualitative match to logging records. The presence of geolocation errors and false alarms makes this method unsuitable for confirming individual disturbances. However, we found a linear relationship (r2=0.74) between the area of detected Sentinel-1 shadow and LiDAR-based canopy loss at a scale of 1 hectare. By applying our method to three years’ worth of imagery over Gabon, we produce the first national scale map of small-magnitude canopy cover loss. We estimate a total gross canopy cover loss of 0.31 Mha, or 1.3% of Gabon’s forested area, which is a far larger area of change than shown in currently available forest loss alert systems using Landsat (0.022 Mha) and Sentinel-1 (0.019 Mha). Our results, which are made accessible through Google Earth Engine, suggest that this approach could be used to quantify the magnitude and timing of degradation more widely across tropical forests." @default.
- W4293660908 created "2022-08-31" @default.
- W4293660908 creator A5009218936 @default.
- W4293660908 creator A5010031939 @default.
- W4293660908 creator A5020623372 @default.
- W4293660908 creator A5026324451 @default.
- W4293660908 creator A5031654381 @default.
- W4293660908 creator A5033111482 @default.
- W4293660908 creator A5044033108 @default.
- W4293660908 creator A5069501441 @default.
- W4293660908 date "2022-08-27" @default.
- W4293660908 modified "2023-10-18" @default.
- W4293660908 title "Sentinel-1 Shadows Used to Quantify Canopy Loss from Selective Logging in Gabon" @default.
- W4293660908 cites W1214056855 @default.
- W4293660908 cites W1778554710 @default.
- W4293660908 cites W1968385740 @default.
- W4293660908 cites W197907523 @default.
- W4293660908 cites W1981213426 @default.
- W4293660908 cites W2010635848 @default.
- W4293660908 cites W2022548072 @default.
- W4293660908 cites W2028191110 @default.
- W4293660908 cites W2031029068 @default.
- W4293660908 cites W2051976728 @default.
- W4293660908 cites W2072445642 @default.
- W4293660908 cites W2080020532 @default.
- W4293660908 cites W2084744129 @default.
- W4293660908 cites W2098919237 @default.
- W4293660908 cites W2110660663 @default.
- W4293660908 cites W2110707033 @default.
- W4293660908 cites W2117141344 @default.
- W4293660908 cites W2140131090 @default.
- W4293660908 cites W2150918587 @default.
- W4293660908 cites W2153733187 @default.
- W4293660908 cites W2158971682 @default.
- W4293660908 cites W2170244367 @default.
- W4293660908 cites W2374980502 @default.
- W4293660908 cites W2464739551 @default.
- W4293660908 cites W2504790083 @default.
- W4293660908 cites W2527207704 @default.
- W4293660908 cites W2618869832 @default.
- W4293660908 cites W2750474973 @default.
- W4293660908 cites W2756906114 @default.
- W4293660908 cites W2766826930 @default.
- W4293660908 cites W2786724563 @default.
- W4293660908 cites W2791930881 @default.
- W4293660908 cites W2883360372 @default.
- W4293660908 cites W2883666593 @default.
- W4293660908 cites W2886438884 @default.
- W4293660908 cites W2904701114 @default.
- W4293660908 cites W2921450810 @default.
- W4293660908 cites W2941722341 @default.
- W4293660908 cites W2980368035 @default.
- W4293660908 cites W3003452346 @default.
- W4293660908 cites W3009000090 @default.
- W4293660908 cites W3009221443 @default.
- W4293660908 cites W3014392601 @default.
- W4293660908 cites W3017380207 @default.
- W4293660908 cites W3034401742 @default.
- W4293660908 cites W3092625606 @default.
- W4293660908 cites W3096729017 @default.
- W4293660908 cites W3107403224 @default.
- W4293660908 cites W3122099883 @default.
- W4293660908 cites W3122223605 @default.
- W4293660908 cites W3143824118 @default.
- W4293660908 cites W3155157871 @default.
- W4293660908 cites W3177498683 @default.
- W4293660908 cites W3197882222 @default.
- W4293660908 cites W3217211428 @default.
- W4293660908 cites W4200062178 @default.
- W4293660908 cites W4200098166 @default.
- W4293660908 cites W4210438736 @default.
- W4293660908 cites W4220776577 @default.
- W4293660908 cites W4220915571 @default.
- W4293660908 doi "https://doi.org/10.3390/rs14174233" @default.
- W4293660908 hasPublicationYear "2022" @default.
- W4293660908 type Work @default.
- W4293660908 citedByCount "2" @default.
- W4293660908 countsByYear W42936609082023 @default.
- W4293660908 crossrefType "journal-article" @default.
- W4293660908 hasAuthorship W4293660908A5009218936 @default.
- W4293660908 hasAuthorship W4293660908A5010031939 @default.
- W4293660908 hasAuthorship W4293660908A5020623372 @default.
- W4293660908 hasAuthorship W4293660908A5026324451 @default.
- W4293660908 hasAuthorship W4293660908A5031654381 @default.
- W4293660908 hasAuthorship W4293660908A5033111482 @default.
- W4293660908 hasAuthorship W4293660908A5044033108 @default.
- W4293660908 hasAuthorship W4293660908A5069501441 @default.
- W4293660908 hasBestOaLocation W42936609081 @default.
- W4293660908 hasConcept C101000010 @default.
- W4293660908 hasConcept C125620115 @default.
- W4293660908 hasConcept C127313418 @default.
- W4293660908 hasConcept C127413603 @default.
- W4293660908 hasConcept C136764020 @default.
- W4293660908 hasConcept C146978453 @default.
- W4293660908 hasConcept C154945302 @default.
- W4293660908 hasConcept C166957645 @default.
- W4293660908 hasConcept C19269812 @default.
- W4293660908 hasConcept C205649164 @default.