Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293693721> ?p ?o ?g. }
- W4293693721 abstract "Abstract While research into Drug-Target Interaction (DTI) prediction is fairly mature, generalizability and interpretability are not always addressed in the existing works in this field. In this paper, we propose a deep learning-based framework, called BindingSite-AugmentedDTA, which improves Drug-Target Affinity (DTA) predictions by reducing the search space of potential binding sites of the protein, thus making the binding affinity prediction more efficient and accurate. Our BindingSite-AugmentedDTA is highly generalizable as it can be integrated with any DL-based regression model, while it significantly improves their prediction performance. Also, unlike many existing models, our model is highly interpretable due to its architecture and self-attention mechanism, which can provide a deeper understanding of its underlying prediction mechanism by mapping attention weights back to protein binding sites. The computational results confirm that our framework can enhance the prediction performance of seven state-of-the-art DTA prediction algorithms in terms of 4 widely used evaluation metrics, including Concordance Index (CI), Mean Squared Error (MSE), modified squared correlation coefficient , and the Area Under the Precision Curve (AUPC). We also contribute to the two most commonly used DTA benchmark datasets, namely Kiba and Davis, by including additional information on 3D structure of all proteins contained in these two datasets. We manually extracted this information from Protein Data Bank (PDB) files of proteins available at https://www.uniprot.org/ . Furthermore, we experimentally validate the practical potential of our proposed framework through in-lab experiments. We measure the binding interaction between several drug candidate compounds for the inhibition of binding between (SARS-CoV-2 S-protein RBD) Spike and ACE-2 (host cell binding target) proteins. We then compare the computationally-predicted results against the ones experimentally-observed in the laboratory. The relatively high agreement between computationally-predicted and experimentally-observed binding interactions supports the potential of our framework as the next-generation pipeline for prediction models in drug repurposing." @default.
- W4293693721 created "2022-08-31" @default.
- W4293693721 creator A5013241705 @default.
- W4293693721 creator A5024754640 @default.
- W4293693721 creator A5026168431 @default.
- W4293693721 creator A5031686351 @default.
- W4293693721 creator A5043368211 @default.
- W4293693721 creator A5054474613 @default.
- W4293693721 creator A5062903281 @default.
- W4293693721 creator A5072134023 @default.
- W4293693721 creator A5075351963 @default.
- W4293693721 creator A5077764254 @default.
- W4293693721 date "2022-08-30" @default.
- W4293693721 modified "2023-09-28" @default.
- W4293693721 title "BindingSiteAugmentedDTA: Enabling A Next-Generation Pipeline for Interpretable Prediction Models in Drug-Repurposing" @default.
- W4293693721 cites W1527782499 @default.
- W4293693721 cites W1972987731 @default.
- W4293693721 cites W2003281617 @default.
- W4293693721 cites W2011580004 @default.
- W4293693721 cites W2023782921 @default.
- W4293693721 cites W2035585923 @default.
- W4293693721 cites W2044002635 @default.
- W4293693721 cites W2065807927 @default.
- W4293693721 cites W2086286404 @default.
- W4293693721 cites W2109991441 @default.
- W4293693721 cites W2135209350 @default.
- W4293693721 cites W2138072853 @default.
- W4293693721 cites W2138778824 @default.
- W4293693721 cites W2145962544 @default.
- W4293693721 cites W2407258532 @default.
- W4293693721 cites W2497965792 @default.
- W4293693721 cites W2519019522 @default.
- W4293693721 cites W2593632281 @default.
- W4293693721 cites W2754595644 @default.
- W4293693721 cites W2785947426 @default.
- W4293693721 cites W2790808809 @default.
- W4293693721 cites W2793951981 @default.
- W4293693721 cites W2806547269 @default.
- W4293693721 cites W2809216727 @default.
- W4293693721 cites W2888955024 @default.
- W4293693721 cites W2899788782 @default.
- W4293693721 cites W2904535843 @default.
- W4293693721 cites W2904742480 @default.
- W4293693721 cites W2915583118 @default.
- W4293693721 cites W2919831875 @default.
- W4293693721 cites W2940242941 @default.
- W4293693721 cites W2986368198 @default.
- W4293693721 cites W2989848927 @default.
- W4293693721 cites W2999554466 @default.
- W4293693721 cites W3000999892 @default.
- W4293693721 cites W3004604833 @default.
- W4293693721 cites W3005669732 @default.
- W4293693721 cites W3007077815 @default.
- W4293693721 cites W3020771351 @default.
- W4293693721 cites W3032123378 @default.
- W4293693721 cites W3049374498 @default.
- W4293693721 cites W3088849005 @default.
- W4293693721 cites W3096561213 @default.
- W4293693721 cites W3098269892 @default.
- W4293693721 cites W3153418506 @default.
- W4293693721 cites W3157142061 @default.
- W4293693721 cites W3212119853 @default.
- W4293693721 cites W4229366052 @default.
- W4293693721 cites W4244021009 @default.
- W4293693721 cites W4285041843 @default.
- W4293693721 doi "https://doi.org/10.1101/2022.08.30.505897" @default.
- W4293693721 hasPublicationYear "2022" @default.
- W4293693721 type Work @default.
- W4293693721 citedByCount "0" @default.
- W4293693721 crossrefType "posted-content" @default.
- W4293693721 hasAuthorship W4293693721A5013241705 @default.
- W4293693721 hasAuthorship W4293693721A5024754640 @default.
- W4293693721 hasAuthorship W4293693721A5026168431 @default.
- W4293693721 hasAuthorship W4293693721A5031686351 @default.
- W4293693721 hasAuthorship W4293693721A5043368211 @default.
- W4293693721 hasAuthorship W4293693721A5054474613 @default.
- W4293693721 hasAuthorship W4293693721A5062903281 @default.
- W4293693721 hasAuthorship W4293693721A5072134023 @default.
- W4293693721 hasAuthorship W4293693721A5075351963 @default.
- W4293693721 hasAuthorship W4293693721A5077764254 @default.
- W4293693721 hasBestOaLocation W42936937211 @default.
- W4293693721 hasConcept C103637391 @default.
- W4293693721 hasConcept C105795698 @default.
- W4293693721 hasConcept C118552586 @default.
- W4293693721 hasConcept C119857082 @default.
- W4293693721 hasConcept C124101348 @default.
- W4293693721 hasConcept C13280743 @default.
- W4293693721 hasConcept C139945424 @default.
- W4293693721 hasConcept C154945302 @default.
- W4293693721 hasConcept C15744967 @default.
- W4293693721 hasConcept C185798385 @default.
- W4293693721 hasConcept C199360897 @default.
- W4293693721 hasConcept C205649164 @default.
- W4293693721 hasConcept C27158222 @default.
- W4293693721 hasConcept C2780035454 @default.
- W4293693721 hasConcept C2781067378 @default.
- W4293693721 hasConcept C33923547 @default.
- W4293693721 hasConcept C41008148 @default.
- W4293693721 hasConcept C43521106 @default.
- W4293693721 hasConceptScore W4293693721C103637391 @default.