Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293694084> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4293694084 endingPage "8" @default.
- W4293694084 startingPage "1" @default.
- W4293694084 abstract "In the context of global science and technology, all countries pay more and more attention to the text analysis of emotional intonation, and the emotional intonation text analysis and policy orientation of enterprise management in major international and domestic enterprises have also changed from shallow to deep. In the twenty-first century, with the rapid development of human society, people's demand for living standards and material needs increases rapidly, and employees' awareness and needs for work are constantly changing. At present, there is the problem of emotional intonation text analysis error in the management of the enterprise, and the task and emotional transmission command are not clear and thorough. It is necessary to reasonably use deep-learning-related algorithms, especially convolutional neural network and other algorithms, to study the emotional intonation text analysis and policy guidance of the enterprise management. Aiming at the forefront of deep learning development, the latest deep learning technologies are constantly introduced. The research field of emotional intonation text analysis and policy orientation of enterprise management is focused. Through simulation experiment, the characteristics of emotional intonation text analysis and policy orientation research of different enterprise management are compared and analyzed, so as to further improve the emotional intonation text analysis and policy orientation of deep learning for enterprise management." @default.
- W4293694084 created "2022-08-31" @default.
- W4293694084 creator A5055505738 @default.
- W4293694084 creator A5056854304 @default.
- W4293694084 date "2022-08-30" @default.
- W4293694084 modified "2023-09-26" @default.
- W4293694084 title "Text Analysis and Policy Guidance of Emotional Intonation of Enterprise Management Based on Deep Learning" @default.
- W4293694084 cites W2064675550 @default.
- W4293694084 cites W2112732052 @default.
- W4293694084 cites W2112796928 @default.
- W4293694084 cites W2116360511 @default.
- W4293694084 cites W2168625136 @default.
- W4293694084 cites W2611614234 @default.
- W4293694084 doi "https://doi.org/10.1155/2022/3428078" @default.
- W4293694084 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36082353" @default.
- W4293694084 hasPublicationYear "2022" @default.
- W4293694084 type Work @default.
- W4293694084 citedByCount "0" @default.
- W4293694084 crossrefType "journal-article" @default.
- W4293694084 hasAuthorship W4293694084A5055505738 @default.
- W4293694084 hasAuthorship W4293694084A5056854304 @default.
- W4293694084 hasBestOaLocation W42936940841 @default.
- W4293694084 hasConcept C108583219 @default.
- W4293694084 hasConcept C138885662 @default.
- W4293694084 hasConcept C151730666 @default.
- W4293694084 hasConcept C154945302 @default.
- W4293694084 hasConcept C15744967 @default.
- W4293694084 hasConcept C162324750 @default.
- W4293694084 hasConcept C16345878 @default.
- W4293694084 hasConcept C180747234 @default.
- W4293694084 hasConcept C187736073 @default.
- W4293694084 hasConcept C204321447 @default.
- W4293694084 hasConcept C2524010 @default.
- W4293694084 hasConcept C2779343474 @default.
- W4293694084 hasConcept C2780451532 @default.
- W4293694084 hasConcept C2781045179 @default.
- W4293694084 hasConcept C33923547 @default.
- W4293694084 hasConcept C41008148 @default.
- W4293694084 hasConcept C41895202 @default.
- W4293694084 hasConcept C56739046 @default.
- W4293694084 hasConcept C86803240 @default.
- W4293694084 hasConceptScore W4293694084C108583219 @default.
- W4293694084 hasConceptScore W4293694084C138885662 @default.
- W4293694084 hasConceptScore W4293694084C151730666 @default.
- W4293694084 hasConceptScore W4293694084C154945302 @default.
- W4293694084 hasConceptScore W4293694084C15744967 @default.
- W4293694084 hasConceptScore W4293694084C162324750 @default.
- W4293694084 hasConceptScore W4293694084C16345878 @default.
- W4293694084 hasConceptScore W4293694084C180747234 @default.
- W4293694084 hasConceptScore W4293694084C187736073 @default.
- W4293694084 hasConceptScore W4293694084C204321447 @default.
- W4293694084 hasConceptScore W4293694084C2524010 @default.
- W4293694084 hasConceptScore W4293694084C2779343474 @default.
- W4293694084 hasConceptScore W4293694084C2780451532 @default.
- W4293694084 hasConceptScore W4293694084C2781045179 @default.
- W4293694084 hasConceptScore W4293694084C33923547 @default.
- W4293694084 hasConceptScore W4293694084C41008148 @default.
- W4293694084 hasConceptScore W4293694084C41895202 @default.
- W4293694084 hasConceptScore W4293694084C56739046 @default.
- W4293694084 hasConceptScore W4293694084C86803240 @default.
- W4293694084 hasLocation W42936940841 @default.
- W4293694084 hasLocation W42936940842 @default.
- W4293694084 hasLocation W42936940843 @default.
- W4293694084 hasLocation W42936940844 @default.
- W4293694084 hasOpenAccess W4293694084 @default.
- W4293694084 hasPrimaryLocation W42936940841 @default.
- W4293694084 hasRelatedWork W2731899572 @default.
- W4293694084 hasRelatedWork W2748952813 @default.
- W4293694084 hasRelatedWork W2773616286 @default.
- W4293694084 hasRelatedWork W2899084033 @default.
- W4293694084 hasRelatedWork W2939353110 @default.
- W4293694084 hasRelatedWork W3009238340 @default.
- W4293694084 hasRelatedWork W3215138031 @default.
- W4293694084 hasRelatedWork W4321369474 @default.
- W4293694084 hasRelatedWork W4327774331 @default.
- W4293694084 hasRelatedWork W4360585206 @default.
- W4293694084 hasVolume "2022" @default.
- W4293694084 isParatext "false" @default.
- W4293694084 isRetracted "false" @default.
- W4293694084 workType "article" @default.