Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293699185> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4293699185 endingPage "8" @default.
- W4293699185 startingPage "1" @default.
- W4293699185 abstract "In the process of continuous urbanization construction, the construction scale of urban landscaping projects is getting larger. At the same time, the design and the maintenance of the management is becoming more important. Recently, the rocketing development of the ternary world of many people, machines, and things has triggered the generation of multisource fusion data and the development of artificial intelligence technology, and the world has entered the era of multisource big data intelligence. Multisource data refer to the fusion of multiple types of data with effective characteristic information, which has richer, more comprehensive, more detailed, and more effective information than a single data source, and can provide high-quality data sources for various complex problems. Therefore, more effective data can be provided for the definition of urban fringe areas. From the moment Google’s AlphaGo defeated Go world champion Li Shishi, the chess game has been occupied by AI, setting off an upsurge in the study, research, and application of AI technology. Colleges and universities around the world have followed suit and set up AI-related majors. Deep learning is one of the cutting-edge technologies in the field of artificial intelligence. It is a method to solve complex real-life problems by extracting effective information from the data and mining key features on the basis of a large amount of learning and computing data." @default.
- W4293699185 created "2022-08-31" @default.
- W4293699185 creator A5021825355 @default.
- W4293699185 date "2022-08-30" @default.
- W4293699185 modified "2023-09-30" @default.
- W4293699185 title "Urban Landscaping Landscape Design and Maintenance Management Method Based on Multisource Big Data Fusion" @default.
- W4293699185 cites W2967639980 @default.
- W4293699185 cites W3037907514 @default.
- W4293699185 cites W3046127236 @default.
- W4293699185 cites W3126241616 @default.
- W4293699185 cites W3131021461 @default.
- W4293699185 cites W3136646416 @default.
- W4293699185 cites W3153639708 @default.
- W4293699185 cites W3168960870 @default.
- W4293699185 cites W3175754247 @default.
- W4293699185 cites W3177345563 @default.
- W4293699185 cites W3184110279 @default.
- W4293699185 cites W3193645165 @default.
- W4293699185 cites W4200248866 @default.
- W4293699185 cites W4200621647 @default.
- W4293699185 cites W4205361803 @default.
- W4293699185 cites W4206393888 @default.
- W4293699185 cites W4286440881 @default.
- W4293699185 doi "https://doi.org/10.1155/2022/1353668" @default.
- W4293699185 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36082348" @default.
- W4293699185 hasPublicationYear "2022" @default.
- W4293699185 type Work @default.
- W4293699185 citedByCount "1" @default.
- W4293699185 countsByYear W42936991852023 @default.
- W4293699185 crossrefType "journal-article" @default.
- W4293699185 hasAuthorship W4293699185A5021825355 @default.
- W4293699185 hasBestOaLocation W42936991851 @default.
- W4293699185 hasConcept C111919701 @default.
- W4293699185 hasConcept C124101348 @default.
- W4293699185 hasConcept C154945302 @default.
- W4293699185 hasConcept C162324750 @default.
- W4293699185 hasConcept C174801256 @default.
- W4293699185 hasConcept C202444582 @default.
- W4293699185 hasConcept C2522767166 @default.
- W4293699185 hasConcept C33923547 @default.
- W4293699185 hasConcept C33954974 @default.
- W4293699185 hasConcept C39853841 @default.
- W4293699185 hasConcept C41008148 @default.
- W4293699185 hasConcept C50522688 @default.
- W4293699185 hasConcept C59822182 @default.
- W4293699185 hasConcept C75684735 @default.
- W4293699185 hasConcept C86803240 @default.
- W4293699185 hasConcept C9652623 @default.
- W4293699185 hasConcept C98045186 @default.
- W4293699185 hasConceptScore W4293699185C111919701 @default.
- W4293699185 hasConceptScore W4293699185C124101348 @default.
- W4293699185 hasConceptScore W4293699185C154945302 @default.
- W4293699185 hasConceptScore W4293699185C162324750 @default.
- W4293699185 hasConceptScore W4293699185C174801256 @default.
- W4293699185 hasConceptScore W4293699185C202444582 @default.
- W4293699185 hasConceptScore W4293699185C2522767166 @default.
- W4293699185 hasConceptScore W4293699185C33923547 @default.
- W4293699185 hasConceptScore W4293699185C33954974 @default.
- W4293699185 hasConceptScore W4293699185C39853841 @default.
- W4293699185 hasConceptScore W4293699185C41008148 @default.
- W4293699185 hasConceptScore W4293699185C50522688 @default.
- W4293699185 hasConceptScore W4293699185C59822182 @default.
- W4293699185 hasConceptScore W4293699185C75684735 @default.
- W4293699185 hasConceptScore W4293699185C86803240 @default.
- W4293699185 hasConceptScore W4293699185C9652623 @default.
- W4293699185 hasConceptScore W4293699185C98045186 @default.
- W4293699185 hasLocation W42936991851 @default.
- W4293699185 hasLocation W42936991852 @default.
- W4293699185 hasLocation W42936991853 @default.
- W4293699185 hasOpenAccess W4293699185 @default.
- W4293699185 hasPrimaryLocation W42936991851 @default.
- W4293699185 hasRelatedWork W2353949602 @default.
- W4293699185 hasRelatedWork W2608950002 @default.
- W4293699185 hasRelatedWork W2783730940 @default.
- W4293699185 hasRelatedWork W2969800500 @default.
- W4293699185 hasRelatedWork W2990382848 @default.
- W4293699185 hasRelatedWork W3037657749 @default.
- W4293699185 hasRelatedWork W3200288307 @default.
- W4293699185 hasRelatedWork W4299638067 @default.
- W4293699185 hasRelatedWork W4308427638 @default.
- W4293699185 hasRelatedWork W4377966303 @default.
- W4293699185 hasVolume "2022" @default.
- W4293699185 isParatext "false" @default.
- W4293699185 isRetracted "false" @default.
- W4293699185 workType "article" @default.