Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293721126> ?p ?o ?g. }
- W4293721126 endingPage "131" @default.
- W4293721126 startingPage "117" @default.
- W4293721126 abstract "Contemporary operation-related requirements for combustion engines force the necessity of ongoing assessment of their in operation technical condition (e.g. marine engines). The engine efficiency and durability depend on a variety of parameters. One of them is valve clearance. As has been proven in the paper, the assessment of the valve clearance can be based on vibration signals, which is not a problem in terms of signal measurement and processing and is not invasive into the engine structure. The authors described the experimental research aiming at providing information necessary to develop and validate the proposed method. Active experiments were used with the task of valve clearance and registration of vibrations using a three-axis transducer placed on the engine cylinder head. The tests were carried out during various operating conditions of the engine set by 5 rotational speeds and 5 load conditions. In order to extract the training examples, fragments of the signal related to the closing of individual valves were divided into 11 shorter portions. From each of them, an effective value of the signal was determined. Obtained total 32054 training vectors for each valve related to 4 classes of valve clearance including very sensitive clearance above 0.8 mm associat-ed with high dynamic interactions in cylinder head. In the paper, the authors propose to use a convolutional network CNN to assess the correct engine valve clearance. The obtained results were compared with other methods of machine learning (pattern recognition network, random forest). Finally, using CNN the valve clearance class identification error was less than 1% for the intake valve and less than 3.5% for the exhaust valve. Developed method replaces the existing standard methods based on FFT and STFT combined with regression calculation where approximation error is up to 10%. Such results are more useful for further studies related not only to classification, but also to the prediction of the valve clearance condition in real engine operations." @default.
- W4293721126 created "2022-08-31" @default.
- W4293721126 creator A5009435979 @default.
- W4293721126 creator A5073234017 @default.
- W4293721126 creator A5088427900 @default.
- W4293721126 date "2022-03-31" @default.
- W4293721126 modified "2023-10-14" @default.
- W4293721126 title "Vibration-based identification of engine valve clearance using a convolutional neural network" @default.
- W4293721126 cites W1164049993 @default.
- W4293721126 cites W1659856658 @default.
- W4293721126 cites W1978804533 @default.
- W4293721126 cites W1978967303 @default.
- W4293721126 cites W2038852234 @default.
- W4293721126 cites W2040418014 @default.
- W4293721126 cites W2049037794 @default.
- W4293721126 cites W2075477421 @default.
- W4293721126 cites W2164772800 @default.
- W4293721126 cites W234533011 @default.
- W4293721126 cites W2462722439 @default.
- W4293721126 cites W2521086057 @default.
- W4293721126 cites W2607714468 @default.
- W4293721126 cites W2615628045 @default.
- W4293721126 cites W2735099784 @default.
- W4293721126 cites W2758818073 @default.
- W4293721126 cites W2762225885 @default.
- W4293721126 cites W2775465287 @default.
- W4293721126 cites W2789289179 @default.
- W4293721126 cites W2789963629 @default.
- W4293721126 cites W2792916989 @default.
- W4293721126 cites W2795535209 @default.
- W4293721126 cites W2804086070 @default.
- W4293721126 cites W2892406056 @default.
- W4293721126 cites W2895829779 @default.
- W4293721126 cites W2953212672 @default.
- W4293721126 cites W2996478589 @default.
- W4293721126 cites W2999881907 @default.
- W4293721126 cites W3012182589 @default.
- W4293721126 cites W3029239408 @default.
- W4293721126 cites W3091831049 @default.
- W4293721126 cites W3156564172 @default.
- W4293721126 cites W3164443880 @default.
- W4293721126 cites W3184697370 @default.
- W4293721126 cites W3199001949 @default.
- W4293721126 cites W3216437557 @default.
- W4293721126 cites W4200047706 @default.
- W4293721126 cites W4200471222 @default.
- W4293721126 cites W4205476016 @default.
- W4293721126 cites W4206608885 @default.
- W4293721126 cites W4210395586 @default.
- W4293721126 cites W4210674249 @default.
- W4293721126 cites W4236058541 @default.
- W4293721126 cites W838834324 @default.
- W4293721126 cites W2920704738 @default.
- W4293721126 doi "https://doi.org/10.5604/01.3001.0015.8254" @default.
- W4293721126 hasPublicationYear "2022" @default.
- W4293721126 type Work @default.
- W4293721126 citedByCount "2" @default.
- W4293721126 countsByYear W42937211262022 @default.
- W4293721126 countsByYear W42937211262023 @default.
- W4293721126 crossrefType "journal-article" @default.
- W4293721126 hasAuthorship W4293721126A5009435979 @default.
- W4293721126 hasAuthorship W4293721126A5073234017 @default.
- W4293721126 hasAuthorship W4293721126A5088427900 @default.
- W4293721126 hasBestOaLocation W42937211261 @default.
- W4293721126 hasConcept C121332964 @default.
- W4293721126 hasConcept C127413603 @default.
- W4293721126 hasConcept C154945302 @default.
- W4293721126 hasConcept C171146098 @default.
- W4293721126 hasConcept C177264268 @default.
- W4293721126 hasConcept C17744445 @default.
- W4293721126 hasConcept C183562833 @default.
- W4293721126 hasConcept C198394728 @default.
- W4293721126 hasConcept C199360897 @default.
- W4293721126 hasConcept C199539241 @default.
- W4293721126 hasConcept C24890656 @default.
- W4293721126 hasConcept C2776439729 @default.
- W4293721126 hasConcept C2778775528 @default.
- W4293721126 hasConcept C2779843651 @default.
- W4293721126 hasConcept C41008148 @default.
- W4293721126 hasConcept C44154836 @default.
- W4293721126 hasConcept C50644808 @default.
- W4293721126 hasConcept C511840579 @default.
- W4293721126 hasConcept C78519656 @default.
- W4293721126 hasConcept C81363708 @default.
- W4293721126 hasConceptScore W4293721126C121332964 @default.
- W4293721126 hasConceptScore W4293721126C127413603 @default.
- W4293721126 hasConceptScore W4293721126C154945302 @default.
- W4293721126 hasConceptScore W4293721126C171146098 @default.
- W4293721126 hasConceptScore W4293721126C177264268 @default.
- W4293721126 hasConceptScore W4293721126C17744445 @default.
- W4293721126 hasConceptScore W4293721126C183562833 @default.
- W4293721126 hasConceptScore W4293721126C198394728 @default.
- W4293721126 hasConceptScore W4293721126C199360897 @default.
- W4293721126 hasConceptScore W4293721126C199539241 @default.
- W4293721126 hasConceptScore W4293721126C24890656 @default.
- W4293721126 hasConceptScore W4293721126C2776439729 @default.
- W4293721126 hasConceptScore W4293721126C2778775528 @default.
- W4293721126 hasConceptScore W4293721126C2779843651 @default.