Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293724679> ?p ?o ?g. }
- W4293724679 endingPage "231" @default.
- W4293724679 startingPage "231" @default.
- W4293724679 abstract "Microcalcification clusters (MCs) are among the most important biomarkers for breast cancer, especially in cases of nonpalpable lesions. The vast majority of deep learning studies on digital breast tomosynthesis (DBT) are focused on detecting and classifying lesions, especially soft-tissue lesions, in small regions of interest previously selected. Only about 25% of the studies are specific to MCs, and all of them are based on the classification of small preselected regions. Classifying the whole image according to the presence or absence of MCs is a difficult task due to the size of MCs and all the information present in an entire image. A completely automatic and direct classification, which receives the entire image, without prior identification of any regions, is crucial for the usefulness of these techniques in a real clinical and screening environment. The main purpose of this work is to implement and evaluate the performance of convolutional neural networks (CNNs) regarding an automatic classification of a complete DBT image for the presence or absence of MCs (without any prior identification of regions). In this work, four popular deep CNNs are trained and compared with a new architecture proposed by us. The main task of these trainings was the classification of DBT cases by absence or presence of MCs. A public database of realistic simulated data was used, and the whole DBT image was taken into account as input. DBT data were considered without and with preprocessing (to study the impact of noise reduction and contrast enhancement methods on the evaluation of MCs with CNNs). The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance. Very promising results were achieved with a maximum AUC of 94.19% for the GoogLeNet. The second-best AUC value was obtained with a new implemented network, CNN-a, with 91.17%. This CNN had the particularity of also being the fastest, thus becoming a very interesting model to be considered in other studies. With this work, encouraging outcomes were achieved in this regard, obtaining similar results to other studies for the detection of larger lesions such as masses. Moreover, given the difficulty of visualizing the MCs, which are often spread over several slices, this work may have an important impact on the clinical analysis of DBT images." @default.
- W4293724679 created "2022-08-31" @default.
- W4293724679 creator A5001311980 @default.
- W4293724679 creator A5041536257 @default.
- W4293724679 creator A5047408026 @default.
- W4293724679 creator A5062735262 @default.
- W4293724679 date "2022-08-29" @default.
- W4293724679 modified "2023-10-15" @default.
- W4293724679 title "Automatic Classification of Simulated Breast Tomosynthesis Whole Images for the Presence of Microcalcification Clusters Using Deep CNNs" @default.
- W4293724679 cites W1561533017 @default.
- W4293724679 cites W1604146550 @default.
- W4293724679 cites W1917647701 @default.
- W4293724679 cites W1980853846 @default.
- W4293724679 cites W1988223972 @default.
- W4293724679 cites W1996777040 @default.
- W4293724679 cites W2001134459 @default.
- W4293724679 cites W2023922170 @default.
- W4293724679 cites W2030069582 @default.
- W4293724679 cites W2031991286 @default.
- W4293724679 cites W2039674374 @default.
- W4293724679 cites W2075723934 @default.
- W4293724679 cites W2076877216 @default.
- W4293724679 cites W2092688199 @default.
- W4293724679 cites W2097117768 @default.
- W4293724679 cites W2110262969 @default.
- W4293724679 cites W2111066681 @default.
- W4293724679 cites W2116825371 @default.
- W4293724679 cites W2120805174 @default.
- W4293724679 cites W2123869011 @default.
- W4293724679 cites W2137082888 @default.
- W4293724679 cites W2146448637 @default.
- W4293724679 cites W2152758555 @default.
- W4293724679 cites W2168662924 @default.
- W4293724679 cites W2194775991 @default.
- W4293724679 cites W2276152551 @default.
- W4293724679 cites W2280541663 @default.
- W4293724679 cites W2405572318 @default.
- W4293724679 cites W2460750615 @default.
- W4293724679 cites W2523374085 @default.
- W4293724679 cites W2524882517 @default.
- W4293724679 cites W2553355083 @default.
- W4293724679 cites W2559553341 @default.
- W4293724679 cites W2573334707 @default.
- W4293724679 cites W2618530766 @default.
- W4293724679 cites W2665676251 @default.
- W4293724679 cites W2743595237 @default.
- W4293724679 cites W2765666676 @default.
- W4293724679 cites W2766061684 @default.
- W4293724679 cites W2778682870 @default.
- W4293724679 cites W2787183641 @default.
- W4293724679 cites W2792724889 @default.
- W4293724679 cites W2796345789 @default.
- W4293724679 cites W2799291955 @default.
- W4293724679 cites W2885557368 @default.
- W4293724679 cites W2885841583 @default.
- W4293724679 cites W2890945786 @default.
- W4293724679 cites W2894094686 @default.
- W4293724679 cites W2896522127 @default.
- W4293724679 cites W2900053041 @default.
- W4293724679 cites W2901743512 @default.
- W4293724679 cites W2902699143 @default.
- W4293724679 cites W2904081134 @default.
- W4293724679 cites W2918598741 @default.
- W4293724679 cites W2966665347 @default.
- W4293724679 cites W2988125122 @default.
- W4293724679 cites W2998175747 @default.
- W4293724679 cites W3004691496 @default.
- W4293724679 cites W3004942370 @default.
- W4293724679 cites W3006379117 @default.
- W4293724679 cites W3008109139 @default.
- W4293724679 cites W3009692632 @default.
- W4293724679 cites W3035655244 @default.
- W4293724679 cites W3036855030 @default.
- W4293724679 cites W3046455172 @default.
- W4293724679 cites W3048690458 @default.
- W4293724679 cites W3097182350 @default.
- W4293724679 cites W3119005666 @default.
- W4293724679 cites W3128646645 @default.
- W4293724679 cites W3144321749 @default.
- W4293724679 cites W3159635797 @default.
- W4293724679 cites W3160749576 @default.
- W4293724679 cites W3183576075 @default.
- W4293724679 cites W3195487931 @default.
- W4293724679 cites W4281699476 @default.
- W4293724679 doi "https://doi.org/10.3390/jimaging8090231" @default.
- W4293724679 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36135397" @default.
- W4293724679 hasPublicationYear "2022" @default.
- W4293724679 type Work @default.
- W4293724679 citedByCount "4" @default.
- W4293724679 countsByYear W42937246792022 @default.
- W4293724679 countsByYear W42937246792023 @default.
- W4293724679 crossrefType "journal-article" @default.
- W4293724679 hasAuthorship W4293724679A5001311980 @default.
- W4293724679 hasAuthorship W4293724679A5041536257 @default.
- W4293724679 hasAuthorship W4293724679A5047408026 @default.
- W4293724679 hasAuthorship W4293724679A5062735262 @default.
- W4293724679 hasBestOaLocation W42937246791 @default.
- W4293724679 hasConcept C108583219 @default.