Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293729910> ?p ?o ?g. }
Showing items 1 to 45 of
45
with 100 items per page.
- W4293729910 endingPage "10" @default.
- W4293729910 startingPage "1" @default.
- W4293729910 abstract "With the development of the times, the exchanges between countries are increasing. China is becoming a superpower, and the number of international cities is increasing. This requires the communication level of Chinese people to be improved. English, as the second largest communication language in China, should be better understood and studied. This paper makes an in-depth discussion on the optimization and evaluation of oral English CAF based on artificial intelligence and corpus and makes an experimental analysis. The results are as follows: (1) introducing oral English teaching based on artificial intelligence and oral English based on a corpus, so as to deepen the public’s cognition of both and make oral English more deeply rooted in people’s hearts and get attention. (2) Analyzing the algorithms of phoneme errors in spoken English. Errors in spoken English are very common. Algorithms can be used to identify them better. When evaluating spoken English, algorithms are needed to evaluate them more accurately. (3) There are many examples of the benefits of artificial intelligence to oral English teaching. By comparison, it is found that the method of evaluating using artificial intelligence is more accurate, a corpus can improve oral English, and CAF optimization is also of great help to oral English." @default.
- W4293729910 created "2022-08-31" @default.
- W4293729910 creator A5057046235 @default.
- W4293729910 date "2022-08-29" @default.
- W4293729910 modified "2023-10-18" @default.
- W4293729910 title "Optimization and Evaluation of Oral English CAF Based on Artificial Intelligence and Corpus" @default.
- W4293729910 cites W4241560429 @default.
- W4293729910 doi "https://doi.org/10.1155/2022/4649643" @default.
- W4293729910 hasPublicationYear "2022" @default.
- W4293729910 type Work @default.
- W4293729910 citedByCount "0" @default.
- W4293729910 crossrefType "journal-article" @default.
- W4293729910 hasAuthorship W4293729910A5057046235 @default.
- W4293729910 hasBestOaLocation W42937299101 @default.
- W4293729910 hasConcept C154945302 @default.
- W4293729910 hasConcept C17744445 @default.
- W4293729910 hasConcept C191935318 @default.
- W4293729910 hasConcept C199539241 @default.
- W4293729910 hasConcept C204321447 @default.
- W4293729910 hasConcept C41008148 @default.
- W4293729910 hasConceptScore W4293729910C154945302 @default.
- W4293729910 hasConceptScore W4293729910C17744445 @default.
- W4293729910 hasConceptScore W4293729910C191935318 @default.
- W4293729910 hasConceptScore W4293729910C199539241 @default.
- W4293729910 hasConceptScore W4293729910C204321447 @default.
- W4293729910 hasConceptScore W4293729910C41008148 @default.
- W4293729910 hasLocation W42937299101 @default.
- W4293729910 hasOpenAccess W4293729910 @default.
- W4293729910 hasPrimaryLocation W42937299101 @default.
- W4293729910 hasRelatedWork W1512718085 @default.
- W4293729910 hasRelatedWork W1569841287 @default.
- W4293729910 hasRelatedWork W2293457016 @default.
- W4293729910 hasRelatedWork W2351428524 @default.
- W4293729910 hasRelatedWork W2359001871 @default.
- W4293729910 hasRelatedWork W2369308426 @default.
- W4293729910 hasRelatedWork W2789919619 @default.
- W4293729910 hasRelatedWork W3169305685 @default.
- W4293729910 hasRelatedWork W1551406738 @default.
- W4293729910 hasRelatedWork W2610387714 @default.
- W4293729910 hasVolume "2022" @default.
- W4293729910 isParatext "false" @default.
- W4293729910 isRetracted "false" @default.
- W4293729910 workType "article" @default.