Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293736816> ?p ?o ?g. }
- W4293736816 endingPage "129842" @default.
- W4293736816 startingPage "129842" @default.
- W4293736816 abstract "As a simple and feasible treatment method, adsorption can be applied in the pretreatment of coal gasification wastewater (CGW) to remove high-concentration contaminants. This study initially selected granular activated carbon (PAC) and different clay materials (sepiolite (SPI), bentonite (BTE), kaolin (KL), diatomite (DTI) and attapulgite (APG)) as adsorbents, and results showed that chemical oxygen demand (COD) removal efficiencies of by PAC, SPI, DTI, KL, BTE and APG were 54.28 %, 44.19 %, 27.15 %, 17.68 %, 16.08 % and 5.58 %, respectively. In contrast, SPI and PAC had high adsorption capacity for high concentrations of organics. Ammonia nitrogen (NH 3 -N) removal efficiency by SPI exceeded 27 %, while the effective capacity of PAC was only 9.3 %. Moreover, pseudo-second-order kinetics better fitted kinetic data for PAC and SPI, revealing that the adsorption of organic pollutants on SPI is multi-molecular layer adsorption. The Sips model well described the adsorption process of contaminants by SPI, and more remarkably, the maximum adsorption capacity of SPI for COD was 438.4 mg/g. Accordingly, SPI and PAC both had significant removal effects on phenol, 2-methylphenol, 4-methylphenol, catechol and other refractory organic pollutants through gas chromatograph-mass spectrometer (GC-MS). Simultaneously, acute biotoxicity of CGW was greatly reduced after PAC and SPI adsorption treatment. Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of strong polar hydration bonds enabled SPI to adsorb organic pollutants through intermolecular forces. SPI still exhibited more than 30 % of COD removal for CGW after 5 cycles. And COD and total phenol (Tph) removal efficiencies in the stable period reached 37.34 % and 31.04 % during the anaerobic process, respectively. Specially, the cost of removing COD per kilogram of SPI is only 2.73 ¥ while the cost of PAC is as high as 26.61 ¥. On the whole, this study provided an important insight for the feasibility application of SPI in the CGW pretreatment process. • The maximum adsorption capacity of SPI for COD was 438.4 mg/g. • PAC had significant removal effects on phenol, 2-methylphenol, 4-methylphenol, catechol and other refractory organic pollutants. • Intermolecular forces was the main mechanism for organics removal by SPI. • The cost of removing COD per kilogram of SPI was only 2.73 ¥." @default.
- W4293736816 created "2022-08-31" @default.
- W4293736816 creator A5003353647 @default.
- W4293736816 creator A5006623989 @default.
- W4293736816 creator A5031751921 @default.
- W4293736816 creator A5056904374 @default.
- W4293736816 creator A5058263060 @default.
- W4293736816 creator A5074999356 @default.
- W4293736816 creator A5082016788 @default.
- W4293736816 creator A5082924617 @default.
- W4293736816 date "2022-10-01" @default.
- W4293736816 modified "2023-10-15" @default.
- W4293736816 title "Enhanced pre-treatment of sepiolite on coal gasification wastewater: Performance and adsorption mechanism" @default.
- W4293736816 cites W1885608392 @default.
- W4293736816 cites W1974994746 @default.
- W4293736816 cites W1990998287 @default.
- W4293736816 cites W2000317505 @default.
- W4293736816 cites W2004504322 @default.
- W4293736816 cites W2039054298 @default.
- W4293736816 cites W2146328678 @default.
- W4293736816 cites W2282847775 @default.
- W4293736816 cites W2332686459 @default.
- W4293736816 cites W2416568261 @default.
- W4293736816 cites W2460406304 @default.
- W4293736816 cites W2603858487 @default.
- W4293736816 cites W2626765387 @default.
- W4293736816 cites W275787169 @default.
- W4293736816 cites W2760459031 @default.
- W4293736816 cites W2789751646 @default.
- W4293736816 cites W2793813140 @default.
- W4293736816 cites W2800562458 @default.
- W4293736816 cites W2895393247 @default.
- W4293736816 cites W2900518605 @default.
- W4293736816 cites W2904559667 @default.
- W4293736816 cites W2943248344 @default.
- W4293736816 cites W2951689877 @default.
- W4293736816 cites W3024857352 @default.
- W4293736816 cites W3047630022 @default.
- W4293736816 cites W3086665946 @default.
- W4293736816 cites W3087684115 @default.
- W4293736816 cites W3090645110 @default.
- W4293736816 cites W3090912294 @default.
- W4293736816 cites W3093044959 @default.
- W4293736816 cites W3093112810 @default.
- W4293736816 cites W3095918792 @default.
- W4293736816 cites W3110333800 @default.
- W4293736816 cites W3116264525 @default.
- W4293736816 cites W3125485711 @default.
- W4293736816 cites W3130817070 @default.
- W4293736816 cites W3134635206 @default.
- W4293736816 cites W3165732383 @default.
- W4293736816 cites W3178107665 @default.
- W4293736816 cites W3193141254 @default.
- W4293736816 cites W3200422836 @default.
- W4293736816 cites W3205483894 @default.
- W4293736816 cites W3212630531 @default.
- W4293736816 cites W3212868574 @default.
- W4293736816 cites W3217296729 @default.
- W4293736816 cites W4200178110 @default.
- W4293736816 cites W4200247122 @default.
- W4293736816 cites W4200274951 @default.
- W4293736816 cites W4205753096 @default.
- W4293736816 cites W4206082452 @default.
- W4293736816 cites W4210398410 @default.
- W4293736816 cites W4212818032 @default.
- W4293736816 cites W4221105926 @default.
- W4293736816 doi "https://doi.org/10.1016/j.jhazmat.2022.129842" @default.
- W4293736816 hasPublicationYear "2022" @default.
- W4293736816 type Work @default.
- W4293736816 citedByCount "0" @default.
- W4293736816 crossrefType "journal-article" @default.
- W4293736816 hasAuthorship W4293736816A5003353647 @default.
- W4293736816 hasAuthorship W4293736816A5006623989 @default.
- W4293736816 hasAuthorship W4293736816A5031751921 @default.
- W4293736816 hasAuthorship W4293736816A5056904374 @default.
- W4293736816 hasAuthorship W4293736816A5058263060 @default.
- W4293736816 hasAuthorship W4293736816A5074999356 @default.
- W4293736816 hasAuthorship W4293736816A5082016788 @default.
- W4293736816 hasAuthorship W4293736816A5082924617 @default.
- W4293736816 hasConcept C12143843 @default.
- W4293736816 hasConcept C127413603 @default.
- W4293736816 hasConcept C13965031 @default.
- W4293736816 hasConcept C150394285 @default.
- W4293736816 hasConcept C160892712 @default.
- W4293736816 hasConcept C178790620 @default.
- W4293736816 hasConcept C185592680 @default.
- W4293736816 hasConcept C188287460 @default.
- W4293736816 hasConcept C206139338 @default.
- W4293736816 hasConcept C2777702071 @default.
- W4293736816 hasConcept C2777979977 @default.
- W4293736816 hasConcept C2779647737 @default.
- W4293736816 hasConcept C2781151301 @default.
- W4293736816 hasConcept C42360764 @default.
- W4293736816 hasConcept C548081761 @default.
- W4293736816 hasConcept C88536862 @default.
- W4293736816 hasConcept C94061648 @default.
- W4293736816 hasConceptScore W4293736816C12143843 @default.
- W4293736816 hasConceptScore W4293736816C127413603 @default.