Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293764935> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4293764935 abstract "Roadside vegetation plays a critical role in the safety and aesthetics of highways and roadways. Well-maintained roadside vegetation aids in soil conservation, improves drainage, stabilizes the slopes, reduces runoff, and improves travel safety. A routine inspection of roadside vegetation is a key requisite for a successful roadside vegetation management system. However, on a regional scale (e.g., county level), the manual routine inspection of roadside vegetation would be extremely labor-intensive and expensive. Therefore, an automated vegetation inspection system is required for the detection and condition assessment of roadside vegetation. To this end, the main objective of this study is to develop an automated inspection system using the state-of-the-art deep learning model to detect roadside vegetation from aerial photography images and classify them based on their quality for maintenance and rehabilitation. The proposed system utilizes the U-Net model to train on a publicly available high-resolution aerial imagery data set from Central Texas and test on images from Texas highways. The results show promising accuracy and precision for roadside vegetation detection and classification. It is expected that the proposed framework will aid transportation agencies in the inspection of roadside vegetation, thereby facilitating proactive rehabilitation decisions." @default.
- W4293764935 created "2022-08-31" @default.
- W4293764935 creator A5017330607 @default.
- W4293764935 creator A5029991903 @default.
- W4293764935 creator A5071926892 @default.
- W4293764935 creator A5081972565 @default.
- W4293764935 creator A5087719124 @default.
- W4293764935 date "2022-08-31" @default.
- W4293764935 modified "2023-10-14" @default.
- W4293764935 title "Detection and Classification of Vegetation for Roadside Vegetation Inspection and Rehabilitation Using Deep Learning Techniques" @default.
- W4293764935 cites W1975601616 @default.
- W4293764935 cites W1984667420 @default.
- W4293764935 cites W1990160629 @default.
- W4293764935 cites W2136251662 @default.
- W4293764935 cites W2600787232 @default.
- W4293764935 cites W2904157408 @default.
- W4293764935 cites W2927874482 @default.
- W4293764935 cites W2972010883 @default.
- W4293764935 cites W2979413210 @default.
- W4293764935 cites W3003266520 @default.
- W4293764935 cites W3047250172 @default.
- W4293764935 cites W3109741163 @default.
- W4293764935 cites W3159296930 @default.
- W4293764935 cites W3163254136 @default.
- W4293764935 cites W4220672282 @default.
- W4293764935 cites W4240402573 @default.
- W4293764935 doi "https://doi.org/10.1061/9780784484319.014" @default.
- W4293764935 hasPublicationYear "2022" @default.
- W4293764935 type Work @default.
- W4293764935 citedByCount "3" @default.
- W4293764935 countsByYear W42937649352023 @default.
- W4293764935 crossrefType "proceedings-article" @default.
- W4293764935 hasAuthorship W4293764935A5017330607 @default.
- W4293764935 hasAuthorship W4293764935A5029991903 @default.
- W4293764935 hasAuthorship W4293764935A5071926892 @default.
- W4293764935 hasAuthorship W4293764935A5081972565 @default.
- W4293764935 hasAuthorship W4293764935A5087719124 @default.
- W4293764935 hasConcept C133214962 @default.
- W4293764935 hasConcept C142724271 @default.
- W4293764935 hasConcept C18903297 @default.
- W4293764935 hasConcept C205649164 @default.
- W4293764935 hasConcept C2776054349 @default.
- W4293764935 hasConcept C2776133958 @default.
- W4293764935 hasConcept C39432304 @default.
- W4293764935 hasConcept C50477045 @default.
- W4293764935 hasConcept C62649853 @default.
- W4293764935 hasConcept C71924100 @default.
- W4293764935 hasConcept C86803240 @default.
- W4293764935 hasConceptScore W4293764935C133214962 @default.
- W4293764935 hasConceptScore W4293764935C142724271 @default.
- W4293764935 hasConceptScore W4293764935C18903297 @default.
- W4293764935 hasConceptScore W4293764935C205649164 @default.
- W4293764935 hasConceptScore W4293764935C2776054349 @default.
- W4293764935 hasConceptScore W4293764935C2776133958 @default.
- W4293764935 hasConceptScore W4293764935C39432304 @default.
- W4293764935 hasConceptScore W4293764935C50477045 @default.
- W4293764935 hasConceptScore W4293764935C62649853 @default.
- W4293764935 hasConceptScore W4293764935C71924100 @default.
- W4293764935 hasConceptScore W4293764935C86803240 @default.
- W4293764935 hasLocation W42937649351 @default.
- W4293764935 hasOpenAccess W4293764935 @default.
- W4293764935 hasPrimaryLocation W42937649351 @default.
- W4293764935 hasRelatedWork W1968818696 @default.
- W4293764935 hasRelatedWork W2005156666 @default.
- W4293764935 hasRelatedWork W2006955178 @default.
- W4293764935 hasRelatedWork W2055762138 @default.
- W4293764935 hasRelatedWork W2384586053 @default.
- W4293764935 hasRelatedWork W2589071916 @default.
- W4293764935 hasRelatedWork W2766233656 @default.
- W4293764935 hasRelatedWork W3107017780 @default.
- W4293764935 hasRelatedWork W4367054594 @default.
- W4293764935 hasRelatedWork W643567371 @default.
- W4293764935 isParatext "false" @default.
- W4293764935 isRetracted "false" @default.
- W4293764935 workType "article" @default.