Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293768695> ?p ?o ?g. }
- W4293768695 endingPage "133803" @default.
- W4293768695 startingPage "133803" @default.
- W4293768695 abstract "Papermaking industry can hardly monitor the dynamic of certain variables in the process when the test can only be conducted offline or destroy samples. Soft sensor is a predictive model that maps the measurable variables to the unknown measurements. In order to address the caused uncertainty, promote the papermaking process, a couple of soft sensors are developed with the industrial data by means of random forest (RF), gradient boosting regression (GBR), ridge regression and K-nearest neighbor (KNN) to monitor folding endurance, bursting strength, smoothness, and transverse ring compressive strength. The optimal models hold accuracy ≥0.839 (R-square) in general, and are applied to the multi-objective of cleaner papermaking production with regard to cost, energy consumption, and greenhouse gas (GHG) emission. The optimized results show that, when process is qualified with soft sensors' support, the possible reduction of cost, energy consumption and GHG emission could be up to 17.3% in total." @default.
- W4293768695 created "2022-08-31" @default.
- W4293768695 creator A5008479517 @default.
- W4293768695 creator A5023246648 @default.
- W4293768695 creator A5051097407 @default.
- W4293768695 creator A5059829687 @default.
- W4293768695 creator A5067789476 @default.
- W4293768695 date "2022-10-01" @default.
- W4293768695 modified "2023-10-06" @default.
- W4293768695 title "Data-driven soft sensors of papermaking process and its application to cleaner production with multi-objective optimization" @default.
- W4293768695 cites W1757201016 @default.
- W4293768695 cites W2118899040 @default.
- W4293768695 cites W2126105956 @default.
- W4293768695 cites W2184903086 @default.
- W4293768695 cites W2542993152 @default.
- W4293768695 cites W2605624226 @default.
- W4293768695 cites W274095980 @default.
- W4293768695 cites W2741546601 @default.
- W4293768695 cites W2789911752 @default.
- W4293768695 cites W2800366260 @default.
- W4293768695 cites W2801543227 @default.
- W4293768695 cites W2809067689 @default.
- W4293768695 cites W2883599811 @default.
- W4293768695 cites W2895373424 @default.
- W4293768695 cites W2906194280 @default.
- W4293768695 cites W2907362029 @default.
- W4293768695 cites W2910015459 @default.
- W4293768695 cites W2914192042 @default.
- W4293768695 cites W2972754533 @default.
- W4293768695 cites W2980608982 @default.
- W4293768695 cites W2982010375 @default.
- W4293768695 cites W2996996571 @default.
- W4293768695 cites W3039374973 @default.
- W4293768695 cites W3043456856 @default.
- W4293768695 cites W3091818255 @default.
- W4293768695 cites W3093656051 @default.
- W4293768695 cites W3123899295 @default.
- W4293768695 cites W3130130308 @default.
- W4293768695 cites W3156922078 @default.
- W4293768695 cites W3161606127 @default.
- W4293768695 cites W3174408439 @default.
- W4293768695 cites W3177578197 @default.
- W4293768695 cites W3194869855 @default.
- W4293768695 cites W366255451 @default.
- W4293768695 cites W4211226422 @default.
- W4293768695 cites W4212998979 @default.
- W4293768695 cites W4213063507 @default.
- W4293768695 cites W4214923713 @default.
- W4293768695 cites W4214939890 @default.
- W4293768695 cites W4220904807 @default.
- W4293768695 cites W4234698323 @default.
- W4293768695 cites W579581331 @default.
- W4293768695 doi "https://doi.org/10.1016/j.jclepro.2022.133803" @default.
- W4293768695 hasPublicationYear "2022" @default.
- W4293768695 type Work @default.
- W4293768695 citedByCount "6" @default.
- W4293768695 countsByYear W42937686952023 @default.
- W4293768695 crossrefType "journal-article" @default.
- W4293768695 hasAuthorship W4293768695A5008479517 @default.
- W4293768695 hasAuthorship W4293768695A5023246648 @default.
- W4293768695 hasAuthorship W4293768695A5051097407 @default.
- W4293768695 hasAuthorship W4293768695A5059829687 @default.
- W4293768695 hasAuthorship W4293768695A5067789476 @default.
- W4293768695 hasConcept C111919701 @default.
- W4293768695 hasConcept C115575686 @default.
- W4293768695 hasConcept C119599485 @default.
- W4293768695 hasConcept C127413603 @default.
- W4293768695 hasConcept C140073362 @default.
- W4293768695 hasConcept C154945302 @default.
- W4293768695 hasConcept C169258074 @default.
- W4293768695 hasConcept C18903297 @default.
- W4293768695 hasConcept C21880701 @default.
- W4293768695 hasConcept C2779093316 @default.
- W4293768695 hasConcept C2780165032 @default.
- W4293768695 hasConcept C41008148 @default.
- W4293768695 hasConcept C44154836 @default.
- W4293768695 hasConcept C47737302 @default.
- W4293768695 hasConcept C50644808 @default.
- W4293768695 hasConcept C528095902 @default.
- W4293768695 hasConcept C70153297 @default.
- W4293768695 hasConcept C86803240 @default.
- W4293768695 hasConcept C98045186 @default.
- W4293768695 hasConceptScore W4293768695C111919701 @default.
- W4293768695 hasConceptScore W4293768695C115575686 @default.
- W4293768695 hasConceptScore W4293768695C119599485 @default.
- W4293768695 hasConceptScore W4293768695C127413603 @default.
- W4293768695 hasConceptScore W4293768695C140073362 @default.
- W4293768695 hasConceptScore W4293768695C154945302 @default.
- W4293768695 hasConceptScore W4293768695C169258074 @default.
- W4293768695 hasConceptScore W4293768695C18903297 @default.
- W4293768695 hasConceptScore W4293768695C21880701 @default.
- W4293768695 hasConceptScore W4293768695C2779093316 @default.
- W4293768695 hasConceptScore W4293768695C2780165032 @default.
- W4293768695 hasConceptScore W4293768695C41008148 @default.
- W4293768695 hasConceptScore W4293768695C44154836 @default.
- W4293768695 hasConceptScore W4293768695C47737302 @default.
- W4293768695 hasConceptScore W4293768695C50644808 @default.
- W4293768695 hasConceptScore W4293768695C528095902 @default.