Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293770138> ?p ?o ?g. }
- W4293770138 endingPage "2230" @default.
- W4293770138 startingPage "2230" @default.
- W4293770138 abstract "Rice is considered one the most important plants globally because it is a source of food for over half the world's population. Like other plants, rice is susceptible to diseases that may affect the quantity and quality of produce. It sometimes results in anywhere between 20-40% crop loss production. Early detection of these diseases can positively affect the harvest, and thus farmers would have to be knowledgeable about the various disease and how to identify them visually. Even then, it is an impossible task for farmers to survey the vast farmlands on a daily basis. Even if this is possible, it becomes a costly task that will, in turn, increases the price of rice for consumers. Machine learning algorithms fitted to drone technology combined with the Internet of Things (IoT) can offer a solution to this problem. In this paper, we propose a Deep Convolutional Neural Network (DCNN) transfer learning-based approach for the accurate detection and classification of rice leaf disease. The modified proposed approach includes a modified VGG19-based transfer learning method. The proposed modified system can accurately detect and diagnose six distinct classes: healthy, narrow brown spot, leaf scald, leaf blast, brown spot, and bacterial leaf blight. The highest average accuracy is 96.08% using the non-normalized augmented dataset. The corresponding precision, recall, specificity, and F1-score were 0.9620, 0.9617, 0.9921, and 0.9616, respectively. The proposed modified approach achieved significantly better results compared with similar approaches using the same dataset or similar-size datasets reported in the extant literature." @default.
- W4293770138 created "2022-08-31" @default.
- W4293770138 creator A5034470555 @default.
- W4293770138 creator A5062275426 @default.
- W4293770138 creator A5085153493 @default.
- W4293770138 creator A5085214727 @default.
- W4293770138 creator A5085603422 @default.
- W4293770138 date "2022-08-28" @default.
- W4293770138 modified "2023-10-12" @default.
- W4293770138 title "Deep Learning Utilization in Agriculture: Detection of Rice Plant Diseases Using an Improved CNN Model" @default.
- W4293770138 cites W2059081260 @default.
- W4293770138 cites W2167828202 @default.
- W4293770138 cites W2185489349 @default.
- W4293770138 cites W2470803522 @default.
- W4293770138 cites W2588266782 @default.
- W4293770138 cites W2610446774 @default.
- W4293770138 cites W2731165298 @default.
- W4293770138 cites W2736026939 @default.
- W4293770138 cites W2890517288 @default.
- W4293770138 cites W2901834526 @default.
- W4293770138 cites W2915159483 @default.
- W4293770138 cites W2956043185 @default.
- W4293770138 cites W2969545732 @default.
- W4293770138 cites W2981086312 @default.
- W4293770138 cites W2993947411 @default.
- W4293770138 cites W3016786410 @default.
- W4293770138 cites W3031311995 @default.
- W4293770138 cites W3042237662 @default.
- W4293770138 cites W3046309342 @default.
- W4293770138 cites W3048816029 @default.
- W4293770138 cites W3083239756 @default.
- W4293770138 cites W3089254501 @default.
- W4293770138 cites W3093143164 @default.
- W4293770138 cites W3093950702 @default.
- W4293770138 cites W3111732785 @default.
- W4293770138 cites W3136213652 @default.
- W4293770138 cites W3148765418 @default.
- W4293770138 cites W3154895406 @default.
- W4293770138 cites W3155943113 @default.
- W4293770138 cites W3155966371 @default.
- W4293770138 cites W3167772742 @default.
- W4293770138 cites W3200795566 @default.
- W4293770138 cites W3203030359 @default.
- W4293770138 cites W3203524106 @default.
- W4293770138 cites W4224236327 @default.
- W4293770138 cites W4280573845 @default.
- W4293770138 cites W4283465129 @default.
- W4293770138 cites W4288489840 @default.
- W4293770138 doi "https://doi.org/10.3390/plants11172230" @default.
- W4293770138 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36079612" @default.
- W4293770138 hasPublicationYear "2022" @default.
- W4293770138 type Work @default.
- W4293770138 citedByCount "25" @default.
- W4293770138 countsByYear W42937701382022 @default.
- W4293770138 countsByYear W42937701382023 @default.
- W4293770138 crossrefType "journal-article" @default.
- W4293770138 hasAuthorship W4293770138A5034470555 @default.
- W4293770138 hasAuthorship W4293770138A5062275426 @default.
- W4293770138 hasAuthorship W4293770138A5085153493 @default.
- W4293770138 hasAuthorship W4293770138A5085214727 @default.
- W4293770138 hasAuthorship W4293770138A5085603422 @default.
- W4293770138 hasBestOaLocation W42937701381 @default.
- W4293770138 hasConcept C108583219 @default.
- W4293770138 hasConcept C118518473 @default.
- W4293770138 hasConcept C119857082 @default.
- W4293770138 hasConcept C127413603 @default.
- W4293770138 hasConcept C144024400 @default.
- W4293770138 hasConcept C149923435 @default.
- W4293770138 hasConcept C150899416 @default.
- W4293770138 hasConcept C154945302 @default.
- W4293770138 hasConcept C182076605 @default.
- W4293770138 hasConcept C18903297 @default.
- W4293770138 hasConcept C201995342 @default.
- W4293770138 hasConcept C2780034373 @default.
- W4293770138 hasConcept C2780451532 @default.
- W4293770138 hasConcept C2908647359 @default.
- W4293770138 hasConcept C2992726227 @default.
- W4293770138 hasConcept C41008148 @default.
- W4293770138 hasConcept C6557445 @default.
- W4293770138 hasConcept C81363708 @default.
- W4293770138 hasConcept C86803240 @default.
- W4293770138 hasConceptScore W4293770138C108583219 @default.
- W4293770138 hasConceptScore W4293770138C118518473 @default.
- W4293770138 hasConceptScore W4293770138C119857082 @default.
- W4293770138 hasConceptScore W4293770138C127413603 @default.
- W4293770138 hasConceptScore W4293770138C144024400 @default.
- W4293770138 hasConceptScore W4293770138C149923435 @default.
- W4293770138 hasConceptScore W4293770138C150899416 @default.
- W4293770138 hasConceptScore W4293770138C154945302 @default.
- W4293770138 hasConceptScore W4293770138C182076605 @default.
- W4293770138 hasConceptScore W4293770138C18903297 @default.
- W4293770138 hasConceptScore W4293770138C201995342 @default.
- W4293770138 hasConceptScore W4293770138C2780034373 @default.
- W4293770138 hasConceptScore W4293770138C2780451532 @default.
- W4293770138 hasConceptScore W4293770138C2908647359 @default.
- W4293770138 hasConceptScore W4293770138C2992726227 @default.
- W4293770138 hasConceptScore W4293770138C41008148 @default.
- W4293770138 hasConceptScore W4293770138C6557445 @default.