Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293772188> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4293772188 abstract "A set of polynomials G in a polynomial ring S over a field is said to be a universal Groebner basis, if G is a Groebner basis with respect to every term order on S. Twenty years ago Bernstein, Sturmfels, and Zelevinsky proved that the set of the maximal minors of a matrix X of variables is a universal Groebner basis. Boocher recently proved that any initial ideal of the ideal of maximal minors of X has a linear resolution. In this paper we give a quick proof of the results mentioned above. Our proof is based on a specialization argument. Then we show that similar statements hold in a more general setting, for matrices of linear forms satisfying certain homogeneity conditions. More precisely, we show that the set of maximal minors of a matrix L of linear forms is a universal Groebner basis for the ideal I that it generates, provided that L is column-graded. Under the same assumption we show that every initial ideal of I has a linear resolution. Furthermore, the projective dimension of I and of its initial ideals is n-m, unless I=0 or a column of L is identically 0. Here L is a matrix of size m times n, and m is smaller than or equal to n. If instead L is row-graded, then we prove that I has a universal Groebner basis of elements of degree m and that every initial ideal of I has a linear resolution, provided that I has the expected codimension. The proofs are based on a rigidity property of radical Borel fixed ideals in a multigraded setting: We prove that if two Borel fixed ideals I and J have the same multigraded Hilbert series and I is radical, then I = J. We also discuss some of the consequences of this rigidity property." @default.
- W4293772188 created "2022-08-31" @default.
- W4293772188 creator A5064915075 @default.
- W4293772188 creator A5073554693 @default.
- W4293772188 creator A5084554315 @default.
- W4293772188 date "2013-02-18" @default.
- W4293772188 modified "2023-09-23" @default.
- W4293772188 title "Universal Groebner bases for maximal minors" @default.
- W4293772188 doi "https://doi.org/10.48550/arxiv.1302.4461" @default.
- W4293772188 hasPublicationYear "2013" @default.
- W4293772188 type Work @default.
- W4293772188 citedByCount "0" @default.
- W4293772188 crossrefType "posted-content" @default.
- W4293772188 hasAuthorship W4293772188A5064915075 @default.
- W4293772188 hasAuthorship W4293772188A5073554693 @default.
- W4293772188 hasAuthorship W4293772188A5084554315 @default.
- W4293772188 hasBestOaLocation W42937721881 @default.
- W4293772188 hasConcept C106487976 @default.
- W4293772188 hasConcept C114614502 @default.
- W4293772188 hasConcept C118615104 @default.
- W4293772188 hasConcept C12426560 @default.
- W4293772188 hasConcept C134306372 @default.
- W4293772188 hasConcept C159985019 @default.
- W4293772188 hasConcept C17744445 @default.
- W4293772188 hasConcept C192562407 @default.
- W4293772188 hasConcept C198082693 @default.
- W4293772188 hasConcept C199539241 @default.
- W4293772188 hasConcept C202444582 @default.
- W4293772188 hasConcept C2524010 @default.
- W4293772188 hasConcept C2776639384 @default.
- W4293772188 hasConcept C33676613 @default.
- W4293772188 hasConcept C33923547 @default.
- W4293772188 hasConcept C55101346 @default.
- W4293772188 hasConcept C90119067 @default.
- W4293772188 hasConcept C9485509 @default.
- W4293772188 hasConceptScore W4293772188C106487976 @default.
- W4293772188 hasConceptScore W4293772188C114614502 @default.
- W4293772188 hasConceptScore W4293772188C118615104 @default.
- W4293772188 hasConceptScore W4293772188C12426560 @default.
- W4293772188 hasConceptScore W4293772188C134306372 @default.
- W4293772188 hasConceptScore W4293772188C159985019 @default.
- W4293772188 hasConceptScore W4293772188C17744445 @default.
- W4293772188 hasConceptScore W4293772188C192562407 @default.
- W4293772188 hasConceptScore W4293772188C198082693 @default.
- W4293772188 hasConceptScore W4293772188C199539241 @default.
- W4293772188 hasConceptScore W4293772188C202444582 @default.
- W4293772188 hasConceptScore W4293772188C2524010 @default.
- W4293772188 hasConceptScore W4293772188C2776639384 @default.
- W4293772188 hasConceptScore W4293772188C33676613 @default.
- W4293772188 hasConceptScore W4293772188C33923547 @default.
- W4293772188 hasConceptScore W4293772188C55101346 @default.
- W4293772188 hasConceptScore W4293772188C90119067 @default.
- W4293772188 hasConceptScore W4293772188C9485509 @default.
- W4293772188 hasLocation W42937721881 @default.
- W4293772188 hasOpenAccess W4293772188 @default.
- W4293772188 hasPrimaryLocation W42937721881 @default.
- W4293772188 hasRelatedWork W1493801153 @default.
- W4293772188 hasRelatedWork W1581445097 @default.
- W4293772188 hasRelatedWork W1808382989 @default.
- W4293772188 hasRelatedWork W2009896212 @default.
- W4293772188 hasRelatedWork W2139654767 @default.
- W4293772188 hasRelatedWork W2171317148 @default.
- W4293772188 hasRelatedWork W2257394818 @default.
- W4293772188 hasRelatedWork W2417763461 @default.
- W4293772188 hasRelatedWork W2952515257 @default.
- W4293772188 hasRelatedWork W3012457466 @default.
- W4293772188 isParatext "false" @default.
- W4293772188 isRetracted "false" @default.
- W4293772188 workType "article" @default.