Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293791105> ?p ?o ?g. }
- W4293791105 endingPage "8271" @default.
- W4293791105 startingPage "8271" @default.
- W4293791105 abstract "Resource optimisation is critical because 5G is intended to be a major enabler and a leading infrastructure provider in the information and communication technology sector by supporting a wide range of upcoming services with varying requirements. Therefore, system improvisation techniques, such as machine learning (ML) and deep learning, must be applied to make the model customisable. Moreover, improvisation allows the prediction system to generate the most accurate outcomes and valuable insights from data whilst enabling effective decisions. In this study, we first provide a literature study on the applications of ML and a summary of the hyperparameters influencing the prediction capabilities of the ML models for the communication system. We demonstrate the behaviour of four ML models: k nearest neighbour, classification and regression trees, random forest and support vector machine. Then, we observe and elaborate on the suitable hyperparameter values for each model based on the accuracy in prediction performance. Based on our observation, the optimal hyperparameter setting for ML models is essential because it directly impacts the model’s performance. Therefore, understanding how the ML models are expected to respond to the system utilised is critical." @default.
- W4293791105 created "2022-08-31" @default.
- W4293791105 creator A5041367517 @default.
- W4293791105 creator A5057166456 @default.
- W4293791105 creator A5068466678 @default.
- W4293791105 creator A5077358441 @default.
- W4293791105 creator A5078202884 @default.
- W4293791105 date "2022-08-18" @default.
- W4293791105 modified "2023-09-25" @default.
- W4293791105 title "5G Technology: ML Hyperparameter Tuning Analysis for Subcarrier Spacing Prediction Model" @default.
- W4293791105 cites W1692308832 @default.
- W4293791105 cites W1995580064 @default.
- W4293791105 cites W2057442840 @default.
- W4293791105 cites W2095363539 @default.
- W4293791105 cites W2097329757 @default.
- W4293791105 cites W2098555178 @default.
- W4293791105 cites W2137079931 @default.
- W4293791105 cites W2139212933 @default.
- W4293791105 cites W2161062919 @default.
- W4293791105 cites W2342603028 @default.
- W4293791105 cites W2489239351 @default.
- W4293791105 cites W2602382373 @default.
- W4293791105 cites W2622801057 @default.
- W4293791105 cites W2750591756 @default.
- W4293791105 cites W2776146695 @default.
- W4293791105 cites W2782171552 @default.
- W4293791105 cites W2787753888 @default.
- W4293791105 cites W2790367514 @default.
- W4293791105 cites W2794916302 @default.
- W4293791105 cites W2802491896 @default.
- W4293791105 cites W2804079537 @default.
- W4293791105 cites W2888108815 @default.
- W4293791105 cites W2896890603 @default.
- W4293791105 cites W2898347473 @default.
- W4293791105 cites W2898424233 @default.
- W4293791105 cites W2921698889 @default.
- W4293791105 cites W2955121492 @default.
- W4293791105 cites W2957007523 @default.
- W4293791105 cites W2973449430 @default.
- W4293791105 cites W2979543333 @default.
- W4293791105 cites W2981735416 @default.
- W4293791105 cites W2999899230 @default.
- W4293791105 cites W3000453568 @default.
- W4293791105 cites W3007943882 @default.
- W4293791105 cites W3014372673 @default.
- W4293791105 cites W3042832119 @default.
- W4293791105 cites W3045004532 @default.
- W4293791105 cites W3046729183 @default.
- W4293791105 cites W3048958729 @default.
- W4293791105 cites W3093621053 @default.
- W4293791105 cites W3155739706 @default.
- W4293791105 cites W3181114467 @default.
- W4293791105 cites W3183192195 @default.
- W4293791105 cites W3196048942 @default.
- W4293791105 cites W4280619808 @default.
- W4293791105 doi "https://doi.org/10.3390/app12168271" @default.
- W4293791105 hasPublicationYear "2022" @default.
- W4293791105 type Work @default.
- W4293791105 citedByCount "2" @default.
- W4293791105 countsByYear W42937911052023 @default.
- W4293791105 crossrefType "journal-article" @default.
- W4293791105 hasAuthorship W4293791105A5041367517 @default.
- W4293791105 hasAuthorship W4293791105A5057166456 @default.
- W4293791105 hasAuthorship W4293791105A5068466678 @default.
- W4293791105 hasAuthorship W4293791105A5077358441 @default.
- W4293791105 hasAuthorship W4293791105A5078202884 @default.
- W4293791105 hasBestOaLocation W42937911051 @default.
- W4293791105 hasConcept C10485038 @default.
- W4293791105 hasConcept C119857082 @default.
- W4293791105 hasConcept C12267149 @default.
- W4293791105 hasConcept C124101348 @default.
- W4293791105 hasConcept C154945302 @default.
- W4293791105 hasConcept C169258074 @default.
- W4293791105 hasConcept C41008148 @default.
- W4293791105 hasConcept C8642999 @default.
- W4293791105 hasConceptScore W4293791105C10485038 @default.
- W4293791105 hasConceptScore W4293791105C119857082 @default.
- W4293791105 hasConceptScore W4293791105C12267149 @default.
- W4293791105 hasConceptScore W4293791105C124101348 @default.
- W4293791105 hasConceptScore W4293791105C154945302 @default.
- W4293791105 hasConceptScore W4293791105C169258074 @default.
- W4293791105 hasConceptScore W4293791105C41008148 @default.
- W4293791105 hasConceptScore W4293791105C8642999 @default.
- W4293791105 hasIssue "16" @default.
- W4293791105 hasLocation W42937911051 @default.
- W4293791105 hasOpenAccess W4293791105 @default.
- W4293791105 hasPrimaryLocation W42937911051 @default.
- W4293791105 hasRelatedWork W3096565539 @default.
- W4293791105 hasRelatedWork W3195168932 @default.
- W4293791105 hasRelatedWork W4200551482 @default.
- W4293791105 hasRelatedWork W4223444191 @default.
- W4293791105 hasRelatedWork W4283697347 @default.
- W4293791105 hasRelatedWork W4295309597 @default.
- W4293791105 hasRelatedWork W4317600379 @default.
- W4293791105 hasRelatedWork W4320494184 @default.
- W4293791105 hasRelatedWork W4322775603 @default.
- W4293791105 hasRelatedWork W4362544620 @default.
- W4293791105 hasVolume "12" @default.