Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293797243> ?p ?o ?g. }
- W4293797243 abstract "Microbial sulfate (SO42-) reduction in Acid Mine Drainage (AMD) environments can ameliorate the acidity and extreme metal concentrations by consumption of protons via the reduction of SO42- to hydrogen sulfide (H2S) and the concomitant precipitation of metals as metal sulfides. The activity of sulfate-reducing bacteria can be stimulated by the amendment of suitable organic carbon sources in these generally oligotrophic environments. Here, we used incubation columns (IC) as model systems to investigate the effect of glycerol amendment on the microbial community composition and its effect on the geochemistry of sediment and waters in AMD environments. The ICs were built with natural water and sediments from four distinct AMD-affected sites with different nutrient regimes: the oligotrophic Filón Centro and Guadiana acidic pit lakes, the Tintillo river (Huelva, Spain) and the eutrophic Brunita pit lake (Murcia, Spain). Physicochemical parameters were monitored during 18 months, and the microbial community composition was determined at the end of incubation through 16S rRNA gene amplicon sequencing. SEM-EDX analysis of sediments and suspended particulate matter was performed to investigate the microbially-induced mineral (neo)formation. Glycerol amendment strongly triggered biosulfidogenesis in all ICs, with pH increase and metal sulfide formation, but the effect was much more pronounced in the ICs from oligotrophic systems. Analysis of the microbial community composition at the end of the incubations showed that the SRB Desulfosporosinus was among the dominant taxa observed in all sulfidogenic columns, whereas the SRB Desulfurispora, Desulfovibrio and Acididesulfobacillus appeared to be more site-specific. Formation of Fe3+ and Al3+ (oxy)hydroxysulfates was observed during the initial phase of incubation together with increasing pH while formation of metal sulfides (predominantly, Zn, Fe and Cu sulfides) was observed after 1-5 months of incubation. Chemical analysis of the aqueous phase at the end of incubation showed almost complete removal of dissolved metals (Cu, Zn, Cd) in the amended ICs, while Fe and SO42- increased towards the water-sediment interface, likely as a result of the reductive dissolution of Fe(III) minerals enhanced by Fe-reducing bacteria. The combined geochemical and microbiological analyses further establish the link between biosulfidogenesis and natural attenuation through metal sulfide formation and proton consumption." @default.
- W4293797243 created "2022-08-31" @default.
- W4293797243 creator A5013863448 @default.
- W4293797243 creator A5034975765 @default.
- W4293797243 creator A5039187927 @default.
- W4293797243 creator A5043148246 @default.
- W4293797243 creator A5072890315 @default.
- W4293797243 creator A5082696813 @default.
- W4293797243 date "2022-08-29" @default.
- W4293797243 modified "2023-10-14" @default.
- W4293797243 title "Glycerol amendment enhances biosulfidogenesis in acid mine drainage-affected areas: An incubation column experiment" @default.
- W4293797243 cites W1499657035 @default.
- W4293797243 cites W1500496508 @default.
- W4293797243 cites W1519281431 @default.
- W4293797243 cites W1589233450 @default.
- W4293797243 cites W1590710652 @default.
- W4293797243 cites W1965275020 @default.
- W4293797243 cites W1967440948 @default.
- W4293797243 cites W1972284414 @default.
- W4293797243 cites W1973637141 @default.
- W4293797243 cites W1974800041 @default.
- W4293797243 cites W1977884048 @default.
- W4293797243 cites W1990644757 @default.
- W4293797243 cites W1994485049 @default.
- W4293797243 cites W1998444874 @default.
- W4293797243 cites W1998600602 @default.
- W4293797243 cites W2006348957 @default.
- W4293797243 cites W2021975240 @default.
- W4293797243 cites W2023672732 @default.
- W4293797243 cites W2031115618 @default.
- W4293797243 cites W2034285706 @default.
- W4293797243 cites W2034798318 @default.
- W4293797243 cites W2037924774 @default.
- W4293797243 cites W2040260673 @default.
- W4293797243 cites W2047578084 @default.
- W4293797243 cites W2056279562 @default.
- W4293797243 cites W2062145010 @default.
- W4293797243 cites W2063541761 @default.
- W4293797243 cites W2064455809 @default.
- W4293797243 cites W2067276756 @default.
- W4293797243 cites W2070113273 @default.
- W4293797243 cites W2075026102 @default.
- W4293797243 cites W2075526577 @default.
- W4293797243 cites W2095172074 @default.
- W4293797243 cites W2098921234 @default.
- W4293797243 cites W2100563176 @default.
- W4293797243 cites W2103296919 @default.
- W4293797243 cites W2119971003 @default.
- W4293797243 cites W2126153192 @default.
- W4293797243 cites W2138211732 @default.
- W4293797243 cites W2139273452 @default.
- W4293797243 cites W2150828490 @default.
- W4293797243 cites W2159552885 @default.
- W4293797243 cites W2162769481 @default.
- W4293797243 cites W2164527244 @default.
- W4293797243 cites W2240260620 @default.
- W4293797243 cites W2242816989 @default.
- W4293797243 cites W258424232 @default.
- W4293797243 cites W2766080925 @default.
- W4293797243 cites W2769874299 @default.
- W4293797243 cites W2778071009 @default.
- W4293797243 cites W2782692016 @default.
- W4293797243 cites W2791048504 @default.
- W4293797243 cites W2888511164 @default.
- W4293797243 cites W2970899423 @default.
- W4293797243 cites W2984759245 @default.
- W4293797243 cites W2990427812 @default.
- W4293797243 cites W3000721498 @default.
- W4293797243 cites W3001942158 @default.
- W4293797243 cites W3003154710 @default.
- W4293797243 cites W3021821897 @default.
- W4293797243 cites W3027293778 @default.
- W4293797243 cites W3080403900 @default.
- W4293797243 cites W3161719345 @default.
- W4293797243 cites W3172086853 @default.
- W4293797243 cites W3182998765 @default.
- W4293797243 cites W3190706471 @default.
- W4293797243 cites W3200055790 @default.
- W4293797243 cites W3215037989 @default.
- W4293797243 cites W4214892621 @default.
- W4293797243 cites W4220729570 @default.
- W4293797243 cites W4221057181 @default.
- W4293797243 cites W4223629616 @default.
- W4293797243 cites W819264700 @default.
- W4293797243 doi "https://doi.org/10.3389/fbioe.2022.978728" @default.
- W4293797243 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36105607" @default.
- W4293797243 hasPublicationYear "2022" @default.
- W4293797243 type Work @default.
- W4293797243 citedByCount "0" @default.
- W4293797243 crossrefType "journal-article" @default.
- W4293797243 hasAuthorship W4293797243A5013863448 @default.
- W4293797243 hasAuthorship W4293797243A5034975765 @default.
- W4293797243 hasAuthorship W4293797243A5039187927 @default.
- W4293797243 hasAuthorship W4293797243A5043148246 @default.
- W4293797243 hasAuthorship W4293797243A5072890315 @default.
- W4293797243 hasAuthorship W4293797243A5082696813 @default.
- W4293797243 hasBestOaLocation W42937972431 @default.
- W4293797243 hasConcept C107872376 @default.
- W4293797243 hasConcept C108970007 @default.
- W4293797243 hasConcept C127313418 @default.