Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293833044> ?p ?o ?g. }
- W4293833044 endingPage "109796" @default.
- W4293833044 startingPage "109796" @default.
- W4293833044 abstract "Convolutional neural networks (CNNs) offer a broad technical framework to deal with spatial feature extraction and nonlinearity capture, whereas they cannot process sequence data and cannot capture the dependencies between the sequence information. Therefore, this paper proposes an improved deep learning model CNN-Bi_LSTM that combines the CNN, Bi_LSTM (i.e., bidirectional long short-term memory network), and fully connected neural network (FCNN) to process the complex dataset for the train travel time prediction. As a result, the presented deep learning framework can capture both the long- and short-term features of complex datasets and the characteristics of time series data. Besides, the multi-feature data fusion processing method is realized with the help of a parallel learning mechanism and the fully connected neural network. Based on a real-life case study of China Railway Express (Chengdu–Europe), the superiority of the CNN-Bi_LSTM model on the train travel time prediction is systemically evaluated and demonstrated, compared with the baseline models of Holt-Winters model, random forest (RF), support vector regression (SVR), LSTM, Bi_LSTM, LSTM with attention mechanism (LSTM_Attention), convolution-based LSTM (CLSTM), CNN_LSTM, hybrid deep learning model (CNN_GRU1), temporal convolutional network (TCN), and parallel deep learning model (CNN_GRU2). Moreover, the values of MSE, RMSE, MAPE, and MAE obtained from the CNN-Bi_LSTM model are equal to 4.647, 2.156, 2.643, and 1.769 respectively Consequently, it is concluded that our proposed CNN-Bi_LSTM model has good prediction results, and it is suitable for the train travel time prediction of China Railway Express." @default.
- W4293833044 created "2022-08-31" @default.
- W4293833044 creator A5004495462 @default.
- W4293833044 creator A5013080039 @default.
- W4293833044 creator A5033751040 @default.
- W4293833044 creator A5044540116 @default.
- W4293833044 creator A5046597133 @default.
- W4293833044 date "2022-11-01" @default.
- W4293833044 modified "2023-10-13" @default.
- W4293833044 title "A CNN-Bi_LSTM parallel network approach for train travel time prediction" @default.
- W4293833044 cites W1676747442 @default.
- W4293833044 cites W1993663269 @default.
- W4293833044 cites W2004353783 @default.
- W4293833044 cites W2092396147 @default.
- W4293833044 cites W2109879495 @default.
- W4293833044 cites W2157873880 @default.
- W4293833044 cites W2209306103 @default.
- W4293833044 cites W2564701384 @default.
- W4293833044 cites W2573587735 @default.
- W4293833044 cites W2588203738 @default.
- W4293833044 cites W2591826082 @default.
- W4293833044 cites W2765699853 @default.
- W4293833044 cites W2769156605 @default.
- W4293833044 cites W2793811993 @default.
- W4293833044 cites W2890672150 @default.
- W4293833044 cites W2903392055 @default.
- W4293833044 cites W2904213462 @default.
- W4293833044 cites W2919841204 @default.
- W4293833044 cites W2933974480 @default.
- W4293833044 cites W2946422154 @default.
- W4293833044 cites W2951927893 @default.
- W4293833044 cites W2963249133 @default.
- W4293833044 cites W3005898469 @default.
- W4293833044 cites W3008996014 @default.
- W4293833044 cites W3012815794 @default.
- W4293833044 cites W3013073464 @default.
- W4293833044 cites W301674672 @default.
- W4293833044 cites W3017373478 @default.
- W4293833044 cites W3021048621 @default.
- W4293833044 cites W3032717740 @default.
- W4293833044 cites W3033353385 @default.
- W4293833044 cites W3038326580 @default.
- W4293833044 cites W3089944167 @default.
- W4293833044 cites W3103283149 @default.
- W4293833044 cites W3111764306 @default.
- W4293833044 cites W3112762228 @default.
- W4293833044 cites W3115103108 @default.
- W4293833044 cites W3119688269 @default.
- W4293833044 cites W3127237617 @default.
- W4293833044 cites W3127692454 @default.
- W4293833044 cites W3190914794 @default.
- W4293833044 cites W3194696687 @default.
- W4293833044 doi "https://doi.org/10.1016/j.knosys.2022.109796" @default.
- W4293833044 hasPublicationYear "2022" @default.
- W4293833044 type Work @default.
- W4293833044 citedByCount "8" @default.
- W4293833044 countsByYear W42938330442022 @default.
- W4293833044 countsByYear W42938330442023 @default.
- W4293833044 crossrefType "journal-article" @default.
- W4293833044 hasAuthorship W4293833044A5004495462 @default.
- W4293833044 hasAuthorship W4293833044A5013080039 @default.
- W4293833044 hasAuthorship W4293833044A5033751040 @default.
- W4293833044 hasAuthorship W4293833044A5044540116 @default.
- W4293833044 hasAuthorship W4293833044A5046597133 @default.
- W4293833044 hasConcept C105795698 @default.
- W4293833044 hasConcept C108583219 @default.
- W4293833044 hasConcept C111919701 @default.
- W4293833044 hasConcept C119857082 @default.
- W4293833044 hasConcept C12267149 @default.
- W4293833044 hasConcept C138885662 @default.
- W4293833044 hasConcept C139945424 @default.
- W4293833044 hasConcept C147168706 @default.
- W4293833044 hasConcept C151406439 @default.
- W4293833044 hasConcept C153180895 @default.
- W4293833044 hasConcept C154945302 @default.
- W4293833044 hasConcept C2776401178 @default.
- W4293833044 hasConcept C33923547 @default.
- W4293833044 hasConcept C41008148 @default.
- W4293833044 hasConcept C41895202 @default.
- W4293833044 hasConcept C50644808 @default.
- W4293833044 hasConcept C81363708 @default.
- W4293833044 hasConcept C98045186 @default.
- W4293833044 hasConceptScore W4293833044C105795698 @default.
- W4293833044 hasConceptScore W4293833044C108583219 @default.
- W4293833044 hasConceptScore W4293833044C111919701 @default.
- W4293833044 hasConceptScore W4293833044C119857082 @default.
- W4293833044 hasConceptScore W4293833044C12267149 @default.
- W4293833044 hasConceptScore W4293833044C138885662 @default.
- W4293833044 hasConceptScore W4293833044C139945424 @default.
- W4293833044 hasConceptScore W4293833044C147168706 @default.
- W4293833044 hasConceptScore W4293833044C151406439 @default.
- W4293833044 hasConceptScore W4293833044C153180895 @default.
- W4293833044 hasConceptScore W4293833044C154945302 @default.
- W4293833044 hasConceptScore W4293833044C2776401178 @default.
- W4293833044 hasConceptScore W4293833044C33923547 @default.
- W4293833044 hasConceptScore W4293833044C41008148 @default.
- W4293833044 hasConceptScore W4293833044C41895202 @default.
- W4293833044 hasConceptScore W4293833044C50644808 @default.