Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293868356> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4293868356 abstract "Seizures are a common symptom of epilepsy, a nervous system disease. Epilepsy can be detected with an Electroencephalogram (EEG) signal that records brain nerve activity. Visual observations cannot be done on a routine basis because the EEG signal has a large volume and high dimensions, so a method for dimension reduction is needed to maintain signal information. Appropriate features should be selected to reduce computational complexity and classification time in detecting epileptic seizures. This study compares the performance of Machine Learning and Deep Learning models to detect epileptic seizures to get the best performing model. The feature extraction process using Discrete Wavelet Transform (DWT) taking feature values, namely maximum, minimum, standard deviation, mean, median, and energy. Furthermore, feature selection uses correlation variables, namely removing uncorrelated variables using threshold variations. The improvement of this study is to use six features, namely the maximum, minimum, standard deviation, mean, median, and energy values, as input values in the classification process. Non-seizure signals and epileptic seizures were classified using Machine Learning: Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Random Forest (RF), Decision Tree (DT), and Deep Learning: Long Short-Term Memory (LSTM). The trials used three variations of datasets, namely dataset 1: 96 signals, dataset 134 signals, and dataset 3: 182 signals. Nine different classification experiments were conducted using four performance evaluation indicators: accuracy, precision, recall, and F1-Score. Based on the test results, the model with the best performance is the SVM method with 100% accuracy, 100% precision, 100% recall, and 100% f1-score." @default.
- W4293868356 created "2022-09-01" @default.
- W4293868356 creator A5061475049 @default.
- W4293868356 creator A5064309899 @default.
- W4293868356 creator A5065837975 @default.
- W4293868356 date "2022-06-16" @default.
- W4293868356 modified "2023-10-16" @default.
- W4293868356 title "Epileptic Seizure Detection Using Machine Learning and Deep Learning Method" @default.
- W4293868356 cites W2040990639 @default.
- W4293868356 cites W2891437665 @default.
- W4293868356 cites W2901730235 @default.
- W4293868356 cites W2901787898 @default.
- W4293868356 cites W2905428622 @default.
- W4293868356 cites W2942144085 @default.
- W4293868356 cites W2989686928 @default.
- W4293868356 cites W3021359670 @default.
- W4293868356 cites W3033591343 @default.
- W4293868356 cites W3037339930 @default.
- W4293868356 cites W3082221732 @default.
- W4293868356 cites W3131943692 @default.
- W4293868356 cites W4205702462 @default.
- W4293868356 doi "https://doi.org/10.1109/cyberneticscom55287.2022.9865313" @default.
- W4293868356 hasPublicationYear "2022" @default.
- W4293868356 type Work @default.
- W4293868356 citedByCount "0" @default.
- W4293868356 crossrefType "proceedings-article" @default.
- W4293868356 hasAuthorship W4293868356A5061475049 @default.
- W4293868356 hasAuthorship W4293868356A5064309899 @default.
- W4293868356 hasAuthorship W4293868356A5065837975 @default.
- W4293868356 hasConcept C105795698 @default.
- W4293868356 hasConcept C108583219 @default.
- W4293868356 hasConcept C118552586 @default.
- W4293868356 hasConcept C119857082 @default.
- W4293868356 hasConcept C12267149 @default.
- W4293868356 hasConcept C138885662 @default.
- W4293868356 hasConcept C148483581 @default.
- W4293868356 hasConcept C153180895 @default.
- W4293868356 hasConcept C154945302 @default.
- W4293868356 hasConcept C15744967 @default.
- W4293868356 hasConcept C169258074 @default.
- W4293868356 hasConcept C169760540 @default.
- W4293868356 hasConcept C196216189 @default.
- W4293868356 hasConcept C22679943 @default.
- W4293868356 hasConcept C2776401178 @default.
- W4293868356 hasConcept C2778186239 @default.
- W4293868356 hasConcept C2779334592 @default.
- W4293868356 hasConcept C33923547 @default.
- W4293868356 hasConcept C41008148 @default.
- W4293868356 hasConcept C41895202 @default.
- W4293868356 hasConcept C46286280 @default.
- W4293868356 hasConcept C47432892 @default.
- W4293868356 hasConcept C522805319 @default.
- W4293868356 hasConcept C52622490 @default.
- W4293868356 hasConceptScore W4293868356C105795698 @default.
- W4293868356 hasConceptScore W4293868356C108583219 @default.
- W4293868356 hasConceptScore W4293868356C118552586 @default.
- W4293868356 hasConceptScore W4293868356C119857082 @default.
- W4293868356 hasConceptScore W4293868356C12267149 @default.
- W4293868356 hasConceptScore W4293868356C138885662 @default.
- W4293868356 hasConceptScore W4293868356C148483581 @default.
- W4293868356 hasConceptScore W4293868356C153180895 @default.
- W4293868356 hasConceptScore W4293868356C154945302 @default.
- W4293868356 hasConceptScore W4293868356C15744967 @default.
- W4293868356 hasConceptScore W4293868356C169258074 @default.
- W4293868356 hasConceptScore W4293868356C169760540 @default.
- W4293868356 hasConceptScore W4293868356C196216189 @default.
- W4293868356 hasConceptScore W4293868356C22679943 @default.
- W4293868356 hasConceptScore W4293868356C2776401178 @default.
- W4293868356 hasConceptScore W4293868356C2778186239 @default.
- W4293868356 hasConceptScore W4293868356C2779334592 @default.
- W4293868356 hasConceptScore W4293868356C33923547 @default.
- W4293868356 hasConceptScore W4293868356C41008148 @default.
- W4293868356 hasConceptScore W4293868356C41895202 @default.
- W4293868356 hasConceptScore W4293868356C46286280 @default.
- W4293868356 hasConceptScore W4293868356C47432892 @default.
- W4293868356 hasConceptScore W4293868356C522805319 @default.
- W4293868356 hasConceptScore W4293868356C52622490 @default.
- W4293868356 hasLocation W42938683561 @default.
- W4293868356 hasOpenAccess W4293868356 @default.
- W4293868356 hasPrimaryLocation W42938683561 @default.
- W4293868356 hasRelatedWork W2053746507 @default.
- W4293868356 hasRelatedWork W2735608799 @default.
- W4293868356 hasRelatedWork W2786903590 @default.
- W4293868356 hasRelatedWork W3003851395 @default.
- W4293868356 hasRelatedWork W3013552204 @default.
- W4293868356 hasRelatedWork W3160838270 @default.
- W4293868356 hasRelatedWork W4225360039 @default.
- W4293868356 hasRelatedWork W4311106074 @default.
- W4293868356 hasRelatedWork W4313203779 @default.
- W4293868356 hasRelatedWork W2345184372 @default.
- W4293868356 isParatext "false" @default.
- W4293868356 isRetracted "false" @default.
- W4293868356 workType "article" @default.