Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293869040> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4293869040 abstract "Human activity recognition (HAR) is becoming more significant in various industrial applications, including medical consideration and rehabilitation monitoring. With the rapid development of information and communication technologies, wearable technologies have inspired a new variety of human-computer interaction. Wearable inertial sensors are typically operated in the area of HAR because they deliver the most critical data on motion signals. Researchers in HAR continuously investigate alternative methodologies and signal sources to enhance HAR approaches. This study aims to determine the effect of combining biosignals with a publicly available dataset derived from wearable sensors on detecting everyday human activities. We utilized the MHEALTH dataset, which contains electrocardiogram (ECG), accelerometer, gyro-scope, and magnetometer data gathered from ten individuals engaged in twelve everyday actions. We proposed a unique deep learning technique for automatically extracting features and constructing a recognition model in several circumstances, including integrated sensor data. Our findings indicate that combining the ECG and IMU signals increases the F1-score of the classifier by 11.53%, from 86.83% to 98.36%." @default.
- W4293869040 created "2022-09-01" @default.
- W4293869040 creator A5021003747 @default.
- W4293869040 creator A5068798343 @default.
- W4293869040 creator A5085644461 @default.
- W4293869040 date "2022-07-01" @default.
- W4293869040 modified "2023-10-03" @default.
- W4293869040 title "Recognition of Human Activity from ECG and IMU Signals Using Deep Learning Networks" @default.
- W4293869040 cites W2054780155 @default.
- W4293869040 cites W2057907879 @default.
- W4293869040 cites W2180635266 @default.
- W4293869040 cites W2316564986 @default.
- W4293869040 cites W2551239383 @default.
- W4293869040 cites W2801854012 @default.
- W4293869040 cites W2897134370 @default.
- W4293869040 cites W2940096514 @default.
- W4293869040 cites W2941733427 @default.
- W4293869040 cites W2971659033 @default.
- W4293869040 cites W2998562532 @default.
- W4293869040 cites W3044326989 @default.
- W4293869040 cites W3135100418 @default.
- W4293869040 cites W3198777052 @default.
- W4293869040 cites W3213642316 @default.
- W4293869040 cites W4224285064 @default.
- W4293869040 cites W4226343225 @default.
- W4293869040 cites W4280571159 @default.
- W4293869040 cites W4285180754 @default.
- W4293869040 doi "https://doi.org/10.1109/tensymp54529.2022.9864495" @default.
- W4293869040 hasPublicationYear "2022" @default.
- W4293869040 type Work @default.
- W4293869040 citedByCount "1" @default.
- W4293869040 countsByYear W42938690402023 @default.
- W4293869040 crossrefType "proceedings-article" @default.
- W4293869040 hasAuthorship W4293869040A5021003747 @default.
- W4293869040 hasAuthorship W4293869040A5068798343 @default.
- W4293869040 hasAuthorship W4293869040A5085644461 @default.
- W4293869040 hasConcept C107457646 @default.
- W4293869040 hasConcept C108583219 @default.
- W4293869040 hasConcept C111919701 @default.
- W4293869040 hasConcept C119857082 @default.
- W4293869040 hasConcept C121687571 @default.
- W4293869040 hasConcept C149635348 @default.
- W4293869040 hasConcept C150594956 @default.
- W4293869040 hasConcept C154945302 @default.
- W4293869040 hasConcept C41008148 @default.
- W4293869040 hasConcept C54290928 @default.
- W4293869040 hasConcept C79061980 @default.
- W4293869040 hasConcept C89805583 @default.
- W4293869040 hasConcept C95623464 @default.
- W4293869040 hasConceptScore W4293869040C107457646 @default.
- W4293869040 hasConceptScore W4293869040C108583219 @default.
- W4293869040 hasConceptScore W4293869040C111919701 @default.
- W4293869040 hasConceptScore W4293869040C119857082 @default.
- W4293869040 hasConceptScore W4293869040C121687571 @default.
- W4293869040 hasConceptScore W4293869040C149635348 @default.
- W4293869040 hasConceptScore W4293869040C150594956 @default.
- W4293869040 hasConceptScore W4293869040C154945302 @default.
- W4293869040 hasConceptScore W4293869040C41008148 @default.
- W4293869040 hasConceptScore W4293869040C54290928 @default.
- W4293869040 hasConceptScore W4293869040C79061980 @default.
- W4293869040 hasConceptScore W4293869040C89805583 @default.
- W4293869040 hasConceptScore W4293869040C95623464 @default.
- W4293869040 hasLocation W42938690401 @default.
- W4293869040 hasOpenAccess W4293869040 @default.
- W4293869040 hasPrimaryLocation W42938690401 @default.
- W4293869040 hasRelatedWork W2087364981 @default.
- W4293869040 hasRelatedWork W2128121198 @default.
- W4293869040 hasRelatedWork W2484897033 @default.
- W4293869040 hasRelatedWork W2765437846 @default.
- W4293869040 hasRelatedWork W3110336329 @default.
- W4293869040 hasRelatedWork W4210412763 @default.
- W4293869040 hasRelatedWork W4214935267 @default.
- W4293869040 hasRelatedWork W4379876715 @default.
- W4293869040 hasRelatedWork W4382562297 @default.
- W4293869040 hasRelatedWork W47322132 @default.
- W4293869040 isParatext "false" @default.
- W4293869040 isRetracted "false" @default.
- W4293869040 workType "article" @default.