Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293872010> ?p ?o ?g. }
Showing items 1 to 41 of
41
with 100 items per page.
- W4293872010 abstract "Traditional analytical theories of celestial mechanics are not well-adapted when dealing with highly elliptical orbits. On the one hand, analytical solutions are quite generally expanded into power series of the eccentricity and so limited to quasi-circular orbits. On the other hand, the time-dependency due to the motion of the third body (e.g. Moon and Sun) is almost always neglected. We propose several tools to overcome these limitations. Firstly, we have expanded the third-body disturbing function into a finite polynomial using Fourier series in multiple of the satellite's eccentric anomaly (instead of the mean anomaly) and involving Hansen-like coefficients. Next, by combining the classical Brouwer-von Zeipel procedure and the time-dependent Lie-Deprit transforms, we have performed a normalization of the expanded Hamiltonian in order to eliminate all the periodic terms. One of the benefits is that the original Brouwer solution for J2 is not modified. The main difficulty lies in the fact that the generating functions of the transformation must be computed by solving a partial differential equation, involving derivatives with respect to the mean anomaly, which appears implicitly in the perturbation. We present a method to solve this equation by means of an iterative process. Finally we have obtained an analytical tool useful for the mission analysis, allowing to propagate the osculating motion of objects on highly elliptical orbits (e>0.6) over long periods efficiently with very high accuracy, or to determine initial elements or mean elements. Comparisons between the complete solution and the numerical simulations will be presented." @default.
- W4293872010 created "2022-09-01" @default.
- W4293872010 creator A5052265673 @default.
- W4293872010 creator A5089985505 @default.
- W4293872010 date "2016-06-12" @default.
- W4293872010 modified "2023-09-27" @default.
- W4293872010 title "Analytical theory for highly elliptical orbits including time-dependent perturbations" @default.
- W4293872010 doi "https://doi.org/10.48550/arxiv.1606.03716" @default.
- W4293872010 hasPublicationYear "2016" @default.
- W4293872010 type Work @default.
- W4293872010 citedByCount "0" @default.
- W4293872010 crossrefType "posted-content" @default.
- W4293872010 hasAuthorship W4293872010A5052265673 @default.
- W4293872010 hasAuthorship W4293872010A5089985505 @default.
- W4293872010 hasBestOaLocation W42938720101 @default.
- W4293872010 hasConcept C134306372 @default.
- W4293872010 hasConcept C207864730 @default.
- W4293872010 hasConcept C33923547 @default.
- W4293872010 hasConcept C40890689 @default.
- W4293872010 hasConcept C73905626 @default.
- W4293872010 hasConceptScore W4293872010C134306372 @default.
- W4293872010 hasConceptScore W4293872010C207864730 @default.
- W4293872010 hasConceptScore W4293872010C33923547 @default.
- W4293872010 hasConceptScore W4293872010C40890689 @default.
- W4293872010 hasConceptScore W4293872010C73905626 @default.
- W4293872010 hasLocation W42938720101 @default.
- W4293872010 hasOpenAccess W4293872010 @default.
- W4293872010 hasPrimaryLocation W42938720101 @default.
- W4293872010 hasRelatedWork W1966015598 @default.
- W4293872010 hasRelatedWork W2022008634 @default.
- W4293872010 hasRelatedWork W2062292002 @default.
- W4293872010 hasRelatedWork W2078498480 @default.
- W4293872010 hasRelatedWork W2349237051 @default.
- W4293872010 hasRelatedWork W2485769812 @default.
- W4293872010 hasRelatedWork W2617540110 @default.
- W4293872010 hasRelatedWork W2972068640 @default.
- W4293872010 hasRelatedWork W3102638020 @default.
- W4293872010 hasRelatedWork W3157737782 @default.
- W4293872010 isParatext "false" @default.
- W4293872010 isRetracted "false" @default.
- W4293872010 workType "article" @default.