Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294000406> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4294000406 endingPage "012049" @default.
- W4294000406 startingPage "012049" @default.
- W4294000406 abstract "Abstract For software projects that deploy vital tasks, it is difficult to estimate the effort of a project. In order to anticipate a few hours of labour effort (either time or personal) to deploy or maintain the software programme, software measurement points must be used. It is difficult to predict the behavior of an application that is engaged in software development during the initial phases of the effort. The hybrid model technique is used in this paper. It is necessary to apply Supervised Learning techniques in the Machine Learning algorithm. It is further subdivided into different types, such as linear regression, logistic regression, SVM (Support Vector Machine) algorithm, Naive Bayes algorithm, PCR(Principal Component Regression) algorithm, (Neural Network)NNET algorithm, KNN (K-Nearest Neighbour) algorithm, K-means, Random Forest algorithm, Dimensionality reduction algorithms, Gradient boosting algorithm, and Ada Boosting algorithm, to name a few examples. PCR algorithm and the nnet algorithm have been utilised for hybrid method, as shown above. Predictions from JM1/Software have been used to create this data collection. With 10886 unique instances and 18 unique traits, this is a very large amount. Metrics for evaluating this system include Mean Absolute Error (MAE), Mean Relative Error (MRE), Mean Magnitude of Relative Error (MMRE), Percentage of Predictive Accuracy (PRED), and R-squared. Compared to single model approaches based on machine learning algorithms techniques, the proposed hybrid using principal component regression and neural networks produced the best results, as demonstrated by the results." @default.
- W4294000406 created "2022-09-01" @default.
- W4294000406 creator A5017364744 @default.
- W4294000406 creator A5038852921 @default.
- W4294000406 creator A5039995091 @default.
- W4294000406 creator A5068566618 @default.
- W4294000406 creator A5081762031 @default.
- W4294000406 date "2022-08-01" @default.
- W4294000406 modified "2023-09-27" @default.
- W4294000406 title "Machine Learning approach for Software Effort Estimation using Combination of Principal Component Regression and Neural Network" @default.
- W4294000406 cites W1901616594 @default.
- W4294000406 cites W2043584165 @default.
- W4294000406 cites W2103296684 @default.
- W4294000406 cites W2125809971 @default.
- W4294000406 cites W2131378644 @default.
- W4294000406 cites W2166773957 @default.
- W4294000406 cites W2169373818 @default.
- W4294000406 cites W2203366176 @default.
- W4294000406 cites W2511742067 @default.
- W4294000406 cites W2623745139 @default.
- W4294000406 cites W3022560936 @default.
- W4294000406 cites W3038246389 @default.
- W4294000406 cites W3047389230 @default.
- W4294000406 doi "https://doi.org/10.1088/1742-6596/2325/1/012049" @default.
- W4294000406 hasPublicationYear "2022" @default.
- W4294000406 type Work @default.
- W4294000406 citedByCount "0" @default.
- W4294000406 crossrefType "journal-article" @default.
- W4294000406 hasAuthorship W4294000406A5017364744 @default.
- W4294000406 hasAuthorship W4294000406A5038852921 @default.
- W4294000406 hasAuthorship W4294000406A5039995091 @default.
- W4294000406 hasAuthorship W4294000406A5068566618 @default.
- W4294000406 hasAuthorship W4294000406A5081762031 @default.
- W4294000406 hasBestOaLocation W42940004061 @default.
- W4294000406 hasConcept C105795698 @default.
- W4294000406 hasConcept C11413529 @default.
- W4294000406 hasConcept C119857082 @default.
- W4294000406 hasConcept C12267149 @default.
- W4294000406 hasConcept C124101348 @default.
- W4294000406 hasConcept C139945424 @default.
- W4294000406 hasConcept C154945302 @default.
- W4294000406 hasConcept C169258074 @default.
- W4294000406 hasConcept C199360897 @default.
- W4294000406 hasConcept C27438332 @default.
- W4294000406 hasConcept C2777904410 @default.
- W4294000406 hasConcept C33923547 @default.
- W4294000406 hasConcept C41008148 @default.
- W4294000406 hasConcept C50644808 @default.
- W4294000406 hasConcept C52001869 @default.
- W4294000406 hasConcept C70518039 @default.
- W4294000406 hasConceptScore W4294000406C105795698 @default.
- W4294000406 hasConceptScore W4294000406C11413529 @default.
- W4294000406 hasConceptScore W4294000406C119857082 @default.
- W4294000406 hasConceptScore W4294000406C12267149 @default.
- W4294000406 hasConceptScore W4294000406C124101348 @default.
- W4294000406 hasConceptScore W4294000406C139945424 @default.
- W4294000406 hasConceptScore W4294000406C154945302 @default.
- W4294000406 hasConceptScore W4294000406C169258074 @default.
- W4294000406 hasConceptScore W4294000406C199360897 @default.
- W4294000406 hasConceptScore W4294000406C27438332 @default.
- W4294000406 hasConceptScore W4294000406C2777904410 @default.
- W4294000406 hasConceptScore W4294000406C33923547 @default.
- W4294000406 hasConceptScore W4294000406C41008148 @default.
- W4294000406 hasConceptScore W4294000406C50644808 @default.
- W4294000406 hasConceptScore W4294000406C52001869 @default.
- W4294000406 hasConceptScore W4294000406C70518039 @default.
- W4294000406 hasIssue "1" @default.
- W4294000406 hasLocation W42940004061 @default.
- W4294000406 hasOpenAccess W4294000406 @default.
- W4294000406 hasPrimaryLocation W42940004061 @default.
- W4294000406 hasRelatedWork W2985924212 @default.
- W4294000406 hasRelatedWork W3108448481 @default.
- W4294000406 hasRelatedWork W3168994312 @default.
- W4294000406 hasRelatedWork W3195168932 @default.
- W4294000406 hasRelatedWork W4221021152 @default.
- W4294000406 hasRelatedWork W4285225238 @default.
- W4294000406 hasRelatedWork W4285343791 @default.
- W4294000406 hasRelatedWork W4377964522 @default.
- W4294000406 hasRelatedWork W4381235817 @default.
- W4294000406 hasRelatedWork W4384345534 @default.
- W4294000406 hasVolume "2325" @default.
- W4294000406 isParatext "false" @default.
- W4294000406 isRetracted "false" @default.
- W4294000406 workType "article" @default.