Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294002146> ?p ?o ?g. }
- W4294002146 abstract "<sec> <title>BACKGROUND</title> Machine learning (ML)–based clinical decision support systems (CDSS) are popular in clinical practice settings but are often criticized for being limited in usability, interpretability, and effectiveness. Evaluating the implementation of ML-based CDSS is critical to ensure CDSS is acceptable and useful to clinicians and helps them deliver high-quality health care. Malnutrition is a common and underdiagnosed condition among hospital patients, which can have serious adverse impacts. Early identification and treatment of malnutrition are important. </sec> <sec> <title>OBJECTIVE</title> This study aims to evaluate the implementation of an ML tool, Malnutrition Universal Screening Tool (MUST)–Plus, that predicts hospital patients at high risk for malnutrition and identify best implementation practices applicable to this and other ML-based CDSS. </sec> <sec> <title>METHODS</title> We conducted a qualitative postimplementation evaluation using in-depth interviews with registered dietitians (RDs) who use MUST-Plus output in their everyday work. After coding the data, we mapped emergent themes onto select domains of the nonadoption, abandonment, scale-up, spread, and sustainability (NASSS) framework. </sec> <sec> <title>RESULTS</title> We interviewed 17 of the 24 RDs approached (71%), representing 37% of those who use MUST-Plus output. Several themes emerged: (1) enhancements to the tool were made to improve accuracy and usability; (2) MUST-Plus helped identify patients that would not otherwise be seen; perceived usefulness was highest in the original site; (3) perceived accuracy varied by respondent and site; (4) RDs valued autonomy in prioritizing patients; (5) depth of tool understanding varied by hospital and level; (6) MUST-Plus was integrated into workflows and electronic health records; and (7) RDs expressed a desire to eventually have 1 automated screener. </sec> <sec> <title>CONCLUSIONS</title> Our findings suggest that continuous involvement of stakeholders at new sites given staff turnover is vital to ensure buy-in. Qualitative research can help identify the potential bias of ML tools and should be widely used to ensure health equity. Ongoing collaboration among CDSS developers, data scientists, and clinical providers may help refine CDSS for optimal use and improve the acceptability of CDSS in the clinical context. </sec> <sec> <title>CLINICALTRIAL</title> <p /> </sec>" @default.
- W4294002146 created "2022-09-01" @default.
- W4294002146 creator A5006635243 @default.
- W4294002146 creator A5014803750 @default.
- W4294002146 creator A5025628035 @default.
- W4294002146 creator A5043593877 @default.
- W4294002146 creator A5050320394 @default.
- W4294002146 creator A5054290496 @default.
- W4294002146 creator A5065354635 @default.
- W4294002146 creator A5070462882 @default.
- W4294002146 date "2022-08-29" @default.
- W4294002146 modified "2023-09-24" @default.
- W4294002146 title "Implementing a Machine Learning Screening Tool for Malnutrition: Insights from Qualitative Research Applicable to Other ML-Based CDSS (Preprint)" @default.
- W4294002146 cites W1970421808 @default.
- W4294002146 cites W1978609040 @default.
- W4294002146 cites W2055690864 @default.
- W4294002146 cites W2069622608 @default.
- W4294002146 cites W2101880068 @default.
- W4294002146 cites W2111069513 @default.
- W4294002146 cites W2133488558 @default.
- W4294002146 cites W2296355999 @default.
- W4294002146 cites W2522597030 @default.
- W4294002146 cites W2546836975 @default.
- W4294002146 cites W2738975713 @default.
- W4294002146 cites W2765304416 @default.
- W4294002146 cites W2981869278 @default.
- W4294002146 cites W3001777144 @default.
- W4294002146 cites W3005576322 @default.
- W4294002146 cites W3031876060 @default.
- W4294002146 cites W3044395800 @default.
- W4294002146 cites W3048367007 @default.
- W4294002146 cites W3081377657 @default.
- W4294002146 cites W3087166427 @default.
- W4294002146 cites W3109130608 @default.
- W4294002146 cites W3113263159 @default.
- W4294002146 cites W3134722266 @default.
- W4294002146 cites W4206686640 @default.
- W4294002146 cites W4231015464 @default.
- W4294002146 doi "https://doi.org/10.2196/preprints.42262" @default.
- W4294002146 hasPublicationYear "2022" @default.
- W4294002146 type Work @default.
- W4294002146 citedByCount "0" @default.
- W4294002146 crossrefType "posted-content" @default.
- W4294002146 hasAuthorship W4294002146A5006635243 @default.
- W4294002146 hasAuthorship W4294002146A5014803750 @default.
- W4294002146 hasAuthorship W4294002146A5025628035 @default.
- W4294002146 hasAuthorship W4294002146A5043593877 @default.
- W4294002146 hasAuthorship W4294002146A5050320394 @default.
- W4294002146 hasAuthorship W4294002146A5054290496 @default.
- W4294002146 hasAuthorship W4294002146A5065354635 @default.
- W4294002146 hasAuthorship W4294002146A5070462882 @default.
- W4294002146 hasBestOaLocation W42940021462 @default.
- W4294002146 hasConcept C105795698 @default.
- W4294002146 hasConcept C107327155 @default.
- W4294002146 hasConcept C107457646 @default.
- W4294002146 hasConcept C119857082 @default.
- W4294002146 hasConcept C142724271 @default.
- W4294002146 hasConcept C144024400 @default.
- W4294002146 hasConcept C154945302 @default.
- W4294002146 hasConcept C159110408 @default.
- W4294002146 hasConcept C170130773 @default.
- W4294002146 hasConcept C17744445 @default.
- W4294002146 hasConcept C179518139 @default.
- W4294002146 hasConcept C190248442 @default.
- W4294002146 hasConcept C199539241 @default.
- W4294002146 hasConcept C2776640315 @default.
- W4294002146 hasConcept C2781067378 @default.
- W4294002146 hasConcept C33923547 @default.
- W4294002146 hasConcept C36289849 @default.
- W4294002146 hasConcept C41008148 @default.
- W4294002146 hasConcept C509550671 @default.
- W4294002146 hasConcept C551997983 @default.
- W4294002146 hasConcept C63527458 @default.
- W4294002146 hasConcept C65414064 @default.
- W4294002146 hasConcept C71924100 @default.
- W4294002146 hasConceptScore W4294002146C105795698 @default.
- W4294002146 hasConceptScore W4294002146C107327155 @default.
- W4294002146 hasConceptScore W4294002146C107457646 @default.
- W4294002146 hasConceptScore W4294002146C119857082 @default.
- W4294002146 hasConceptScore W4294002146C142724271 @default.
- W4294002146 hasConceptScore W4294002146C144024400 @default.
- W4294002146 hasConceptScore W4294002146C154945302 @default.
- W4294002146 hasConceptScore W4294002146C159110408 @default.
- W4294002146 hasConceptScore W4294002146C170130773 @default.
- W4294002146 hasConceptScore W4294002146C17744445 @default.
- W4294002146 hasConceptScore W4294002146C179518139 @default.
- W4294002146 hasConceptScore W4294002146C190248442 @default.
- W4294002146 hasConceptScore W4294002146C199539241 @default.
- W4294002146 hasConceptScore W4294002146C2776640315 @default.
- W4294002146 hasConceptScore W4294002146C2781067378 @default.
- W4294002146 hasConceptScore W4294002146C33923547 @default.
- W4294002146 hasConceptScore W4294002146C36289849 @default.
- W4294002146 hasConceptScore W4294002146C41008148 @default.
- W4294002146 hasConceptScore W4294002146C509550671 @default.
- W4294002146 hasConceptScore W4294002146C551997983 @default.
- W4294002146 hasConceptScore W4294002146C63527458 @default.
- W4294002146 hasConceptScore W4294002146C65414064 @default.
- W4294002146 hasConceptScore W4294002146C71924100 @default.
- W4294002146 hasLocation W42940021461 @default.
- W4294002146 hasLocation W42940021462 @default.