Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294002912> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4294002912 abstract "Many fundamental properties of a quantum system are captured by its Hamiltonian and ground state. Despite the significance of ground states preparation (GSP), this task is classically intractable for large-scale Hamiltonians. Quantum neural networks (QNNs), which exert the power of modern quantum machines, have emerged as a leading protocol to conquer this issue. As such, how to enhance the performance of QNNs becomes a crucial topic in GSP. Empirical evidence showed that QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes, while theoretical explanations have not been explored. To fill this knowledge gap, here we propose the effective quantum neural tangent kernel (EQNTK) and connect this concept with over-parameterization theory to quantify the convergence of QNNs towards the global optima. We uncover that the advance of symmetric ansatzes attributes to their large EQNTK value with low effective dimension, which requests few parameters and quantum circuit depth to reach the over-parameterization regime permitting a benign loss landscape and fast convergence. Guided by EQNTK, we further devise a symmetric pruning (SP) scheme to automatically tailor a symmetric ansatz from an over-parameterized and asymmetric one to greatly improve the performance of QNNs when the explicit symmetry information of Hamiltonian is unavailable. Extensive numerical simulations are conducted to validate the analytical results of EQNTK and the effectiveness of SP." @default.
- W4294002912 created "2022-09-01" @default.
- W4294002912 creator A5030346806 @default.
- W4294002912 creator A5040698416 @default.
- W4294002912 creator A5055883101 @default.
- W4294002912 creator A5065250332 @default.
- W4294002912 creator A5074103823 @default.
- W4294002912 creator A5074630977 @default.
- W4294002912 date "2022-08-30" @default.
- W4294002912 modified "2023-10-02" @default.
- W4294002912 title "Symmetric Pruning in Quantum Neural Networks" @default.
- W4294002912 doi "https://doi.org/10.48550/arxiv.2208.14057" @default.
- W4294002912 hasPublicationYear "2022" @default.
- W4294002912 type Work @default.
- W4294002912 citedByCount "1" @default.
- W4294002912 countsByYear W42940029122023 @default.
- W4294002912 crossrefType "posted-content" @default.
- W4294002912 hasAuthorship W4294002912A5030346806 @default.
- W4294002912 hasAuthorship W4294002912A5040698416 @default.
- W4294002912 hasAuthorship W4294002912A5055883101 @default.
- W4294002912 hasAuthorship W4294002912A5065250332 @default.
- W4294002912 hasAuthorship W4294002912A5074103823 @default.
- W4294002912 hasAuthorship W4294002912A5074630977 @default.
- W4294002912 hasBestOaLocation W42940029121 @default.
- W4294002912 hasConcept C111030470 @default.
- W4294002912 hasConcept C11413529 @default.
- W4294002912 hasConcept C114614502 @default.
- W4294002912 hasConcept C121332964 @default.
- W4294002912 hasConcept C121864883 @default.
- W4294002912 hasConcept C126255220 @default.
- W4294002912 hasConcept C130787639 @default.
- W4294002912 hasConcept C130979935 @default.
- W4294002912 hasConcept C154945302 @default.
- W4294002912 hasConcept C165464430 @default.
- W4294002912 hasConcept C184720557 @default.
- W4294002912 hasConcept C28826006 @default.
- W4294002912 hasConcept C33923547 @default.
- W4294002912 hasConcept C41008148 @default.
- W4294002912 hasConcept C48044578 @default.
- W4294002912 hasConcept C50644808 @default.
- W4294002912 hasConcept C62520636 @default.
- W4294002912 hasConcept C77088390 @default.
- W4294002912 hasConcept C84114770 @default.
- W4294002912 hasConceptScore W4294002912C111030470 @default.
- W4294002912 hasConceptScore W4294002912C11413529 @default.
- W4294002912 hasConceptScore W4294002912C114614502 @default.
- W4294002912 hasConceptScore W4294002912C121332964 @default.
- W4294002912 hasConceptScore W4294002912C121864883 @default.
- W4294002912 hasConceptScore W4294002912C126255220 @default.
- W4294002912 hasConceptScore W4294002912C130787639 @default.
- W4294002912 hasConceptScore W4294002912C130979935 @default.
- W4294002912 hasConceptScore W4294002912C154945302 @default.
- W4294002912 hasConceptScore W4294002912C165464430 @default.
- W4294002912 hasConceptScore W4294002912C184720557 @default.
- W4294002912 hasConceptScore W4294002912C28826006 @default.
- W4294002912 hasConceptScore W4294002912C33923547 @default.
- W4294002912 hasConceptScore W4294002912C41008148 @default.
- W4294002912 hasConceptScore W4294002912C48044578 @default.
- W4294002912 hasConceptScore W4294002912C50644808 @default.
- W4294002912 hasConceptScore W4294002912C62520636 @default.
- W4294002912 hasConceptScore W4294002912C77088390 @default.
- W4294002912 hasConceptScore W4294002912C84114770 @default.
- W4294002912 hasLocation W42940029121 @default.
- W4294002912 hasOpenAccess W4294002912 @default.
- W4294002912 hasPrimaryLocation W42940029121 @default.
- W4294002912 hasRelatedWork W2110687031 @default.
- W4294002912 hasRelatedWork W3098175809 @default.
- W4294002912 hasRelatedWork W3101608704 @default.
- W4294002912 hasRelatedWork W3202025613 @default.
- W4294002912 hasRelatedWork W4281743141 @default.
- W4294002912 hasRelatedWork W4285045060 @default.
- W4294002912 hasRelatedWork W4307563054 @default.
- W4294002912 hasRelatedWork W4308828549 @default.
- W4294002912 hasRelatedWork W4313410848 @default.
- W4294002912 hasRelatedWork W4321392308 @default.
- W4294002912 isParatext "false" @default.
- W4294002912 isRetracted "false" @default.
- W4294002912 workType "article" @default.