Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294018282> ?p ?o ?g. }
- W4294018282 endingPage "330" @default.
- W4294018282 startingPage "312" @default.
- W4294018282 abstract "Abstract This paper investigates the soybean futures price prediction problem from a new perspective and proposes an effective prediction model named Two‐Stage Hybrid Long Short‐Term Memory (TSH‐LSTM) by using text data from social media. First, the unstructured text is transformed into structured data by sentiment analysis and text classification methods. The improved sentiment score is computed by combining the degree centrality of sentiment words based on the sentiment dictionary method, and the characteristics of price fluctuations in texts are learned through the text Recurrent Convolutional Neural Networks. Second, the significant relationship between social media features and soybean futures price is assessed through stepwise regression, and the results of such an assessment are used as a basis for the identification of significant factors as input variables of the prediction model. Finally, the TSH‐LSTM prediction model is designed, and the final prediction result is acquired through the combination of prediction results of each stage using the error reciprocal method. The empirical results indicate that the incorporation of the social media text feature helps improve forecasting performances. Specifically, the proposed TSH‐LSTM is more accurate than univariate LSTM, multivariate LSTM, and eXtreme Gradient Boosting." @default.
- W4294018282 created "2022-09-01" @default.
- W4294018282 creator A5008829405 @default.
- W4294018282 creator A5052045215 @default.
- W4294018282 creator A5085809537 @default.
- W4294018282 date "2022-09-13" @default.
- W4294018282 modified "2023-10-16" @default.
- W4294018282 title "Text‐based soybean futures price forecasting: A two‐stage deep learning approach" @default.
- W4294018282 cites W2040388435 @default.
- W4294018282 cites W2120890373 @default.
- W4294018282 cites W2143588486 @default.
- W4294018282 cites W2156984202 @default.
- W4294018282 cites W2170890002 @default.
- W4294018282 cites W2261525379 @default.
- W4294018282 cites W2346811309 @default.
- W4294018282 cites W2515056294 @default.
- W4294018282 cites W2530772005 @default.
- W4294018282 cites W2741068695 @default.
- W4294018282 cites W2763117283 @default.
- W4294018282 cites W2766126124 @default.
- W4294018282 cites W2788730162 @default.
- W4294018282 cites W2810156540 @default.
- W4294018282 cites W2810318119 @default.
- W4294018282 cites W2898959287 @default.
- W4294018282 cites W2918076989 @default.
- W4294018282 cites W2925042978 @default.
- W4294018282 cites W2950114924 @default.
- W4294018282 cites W2951484092 @default.
- W4294018282 cites W2999255652 @default.
- W4294018282 cites W3007066689 @default.
- W4294018282 cites W3011178959 @default.
- W4294018282 cites W3016462384 @default.
- W4294018282 cites W3017208941 @default.
- W4294018282 cites W3044644859 @default.
- W4294018282 cites W3045961212 @default.
- W4294018282 cites W3085720755 @default.
- W4294018282 cites W3097705888 @default.
- W4294018282 cites W3102476541 @default.
- W4294018282 cites W3122297847 @default.
- W4294018282 cites W3132225612 @default.
- W4294018282 cites W3136889164 @default.
- W4294018282 cites W3137516072 @default.
- W4294018282 cites W3195178768 @default.
- W4294018282 cites W3195840469 @default.
- W4294018282 cites W3196316267 @default.
- W4294018282 cites W3213564128 @default.
- W4294018282 cites W3217076337 @default.
- W4294018282 cites W4210997473 @default.
- W4294018282 cites W4211170086 @default.
- W4294018282 cites W4220779540 @default.
- W4294018282 doi "https://doi.org/10.1002/for.2909" @default.
- W4294018282 hasPublicationYear "2022" @default.
- W4294018282 type Work @default.
- W4294018282 citedByCount "4" @default.
- W4294018282 countsByYear W42940182822023 @default.
- W4294018282 crossrefType "journal-article" @default.
- W4294018282 hasAuthorship W4294018282A5008829405 @default.
- W4294018282 hasAuthorship W4294018282A5052045215 @default.
- W4294018282 hasAuthorship W4294018282A5085809537 @default.
- W4294018282 hasConcept C10138342 @default.
- W4294018282 hasConcept C106306483 @default.
- W4294018282 hasConcept C119857082 @default.
- W4294018282 hasConcept C154945302 @default.
- W4294018282 hasConcept C161584116 @default.
- W4294018282 hasConcept C162324750 @default.
- W4294018282 hasConcept C169258074 @default.
- W4294018282 hasConcept C199163554 @default.
- W4294018282 hasConcept C41008148 @default.
- W4294018282 hasConcept C66402592 @default.
- W4294018282 hasConcept C70153297 @default.
- W4294018282 hasConcept C81363708 @default.
- W4294018282 hasConceptScore W4294018282C10138342 @default.
- W4294018282 hasConceptScore W4294018282C106306483 @default.
- W4294018282 hasConceptScore W4294018282C119857082 @default.
- W4294018282 hasConceptScore W4294018282C154945302 @default.
- W4294018282 hasConceptScore W4294018282C161584116 @default.
- W4294018282 hasConceptScore W4294018282C162324750 @default.
- W4294018282 hasConceptScore W4294018282C169258074 @default.
- W4294018282 hasConceptScore W4294018282C199163554 @default.
- W4294018282 hasConceptScore W4294018282C41008148 @default.
- W4294018282 hasConceptScore W4294018282C66402592 @default.
- W4294018282 hasConceptScore W4294018282C70153297 @default.
- W4294018282 hasConceptScore W4294018282C81363708 @default.
- W4294018282 hasFunder F4320335869 @default.
- W4294018282 hasIssue "2" @default.
- W4294018282 hasLocation W42940182821 @default.
- W4294018282 hasOpenAccess W4294018282 @default.
- W4294018282 hasPrimaryLocation W42940182821 @default.
- W4294018282 hasRelatedWork W1828158523 @default.
- W4294018282 hasRelatedWork W1993992974 @default.
- W4294018282 hasRelatedWork W204175656 @default.
- W4294018282 hasRelatedWork W2047547195 @default.
- W4294018282 hasRelatedWork W3201348321 @default.
- W4294018282 hasRelatedWork W3208169454 @default.
- W4294018282 hasRelatedWork W4294691859 @default.
- W4294018282 hasRelatedWork W4315777889 @default.
- W4294018282 hasRelatedWork W4322710485 @default.
- W4294018282 hasRelatedWork W4386690025 @default.