Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294053533> ?p ?o ?g. }
- W4294053533 abstract "Scale-dependent surface roughness strongly affects critical surface properties of materials, including adhesion, wettability, and optical/thermal properties. As a particular example, tuning the ratio of the true to nominal area—a parameter that depends on the root mean square (RMS) local slope of the finest scales of topography—is an effective approach to tailor the wetting characteristics of solid surfaces. While power spectral density (PSD) analysis of atomic force microscopy (AFM) topographic images allows for directly assessing the scale-dependence of surface roughness, this approach to analyze AFM height maps requires power-law modeling and extrapolation of a PSD with inherently non-normal error distributions. Here, we use a Monte Carlo approach based on synthetic AFM images of known input power-law parameters to (1) evaluate the accuracy of fitting techniques based on the expected distribution of the PSD; (2) evaluate the error propagation from the standard errors of the fitted power-law parameters to the computed RMS slope and area ratio; and (3) evaluate the statistical power of various PSD regression techniques when differentiating surfaces. The results indicated that standard error for ordinary least squares on a log-log PSD (log OLS) underpredicts the observed variance by ∼50%. This underprediction can be eliminated by implementing a log-link gamma regression. Moreover, when propagating the standard error to derived parameters (e.g., the RMS slope), the propagated error is generally conservative relative to the observed variance and closely predicts the observed variance when extrapolating to the finest scale. This result demonstrates the possibility of accurately estimating roughness parameters that are critical for evaluating surface phenomena on the basis of fitting and extrapolating AFM data using self-affine models. Finally, our results provided evidence for the possibility of statistically differentiating surfaces with similar power-law parameters when using weighted gamma regression with a mean of 10 images, as opposed to unweighted log-OLS that requires as many as 10 000 images to differentiate images." @default.
- W4294053533 created "2022-09-01" @default.
- W4294053533 creator A5030959417 @default.
- W4294053533 creator A5070846100 @default.
- W4294053533 date "2022-09-01" @default.
- W4294053533 modified "2023-09-27" @default.
- W4294053533 title "On the nature and propagation of errors in roughness parameters obtained from spectral analysis of atomic force microscopy topographic images" @default.
- W4294053533 cites W1169409148 @default.
- W4294053533 cites W142046526 @default.
- W4294053533 cites W1801074146 @default.
- W4294053533 cites W1969324628 @default.
- W4294053533 cites W1970523980 @default.
- W4294053533 cites W1971990676 @default.
- W4294053533 cites W1979731145 @default.
- W4294053533 cites W1980438367 @default.
- W4294053533 cites W1980499555 @default.
- W4294053533 cites W1984536024 @default.
- W4294053533 cites W1985432569 @default.
- W4294053533 cites W1990208398 @default.
- W4294053533 cites W1993220086 @default.
- W4294053533 cites W1996007769 @default.
- W4294053533 cites W1997078088 @default.
- W4294053533 cites W1998203900 @default.
- W4294053533 cites W1999866833 @default.
- W4294053533 cites W2002478524 @default.
- W4294053533 cites W2003085719 @default.
- W4294053533 cites W2005877441 @default.
- W4294053533 cites W2011981966 @default.
- W4294053533 cites W2019841176 @default.
- W4294053533 cites W2022593932 @default.
- W4294053533 cites W2028660519 @default.
- W4294053533 cites W2028853317 @default.
- W4294053533 cites W2029277364 @default.
- W4294053533 cites W2031753087 @default.
- W4294053533 cites W2032671446 @default.
- W4294053533 cites W2034458502 @default.
- W4294053533 cites W2048695107 @default.
- W4294053533 cites W2054560749 @default.
- W4294053533 cites W2055959755 @default.
- W4294053533 cites W2056162198 @default.
- W4294053533 cites W2061171222 @default.
- W4294053533 cites W2063542188 @default.
- W4294053533 cites W2066521582 @default.
- W4294053533 cites W2067342226 @default.
- W4294053533 cites W2072094594 @default.
- W4294053533 cites W2074431908 @default.
- W4294053533 cites W2074640227 @default.
- W4294053533 cites W2077158601 @default.
- W4294053533 cites W2078538522 @default.
- W4294053533 cites W2081029895 @default.
- W4294053533 cites W2082877303 @default.
- W4294053533 cites W2089030360 @default.
- W4294053533 cites W2091114066 @default.
- W4294053533 cites W2098061712 @default.
- W4294053533 cites W2116188560 @default.
- W4294053533 cites W2125015779 @default.
- W4294053533 cites W2127187711 @default.
- W4294053533 cites W2139124365 @default.
- W4294053533 cites W2145085348 @default.
- W4294053533 cites W2150297986 @default.
- W4294053533 cites W2152123134 @default.
- W4294053533 cites W2158572649 @default.
- W4294053533 cites W2169258518 @default.
- W4294053533 cites W2203207841 @default.
- W4294053533 cites W2317225761 @default.
- W4294053533 cites W2323546653 @default.
- W4294053533 cites W2323716726 @default.
- W4294053533 cites W2333098904 @default.
- W4294053533 cites W2470121600 @default.
- W4294053533 cites W2615543438 @default.
- W4294053533 cites W2739837566 @default.
- W4294053533 cites W2769517611 @default.
- W4294053533 cites W2786191776 @default.
- W4294053533 cites W2884704621 @default.
- W4294053533 cites W2907863050 @default.
- W4294053533 cites W2990443789 @default.
- W4294053533 cites W2993330478 @default.
- W4294053533 cites W3098749886 @default.
- W4294053533 cites W3100140273 @default.
- W4294053533 cites W3103158239 @default.
- W4294053533 cites W3103236352 @default.
- W4294053533 cites W3124564277 @default.
- W4294053533 cites W3125963642 @default.
- W4294053533 cites W3138128945 @default.
- W4294053533 cites W3172275225 @default.
- W4294053533 cites W3214131758 @default.
- W4294053533 cites W4200580950 @default.
- W4294053533 cites W4297397521 @default.
- W4294053533 doi "https://doi.org/10.1116/6.0001998" @default.
- W4294053533 hasPublicationYear "2022" @default.
- W4294053533 type Work @default.
- W4294053533 citedByCount "0" @default.
- W4294053533 crossrefType "journal-article" @default.
- W4294053533 hasAuthorship W4294053533A5030959417 @default.
- W4294053533 hasAuthorship W4294053533A5070846100 @default.
- W4294053533 hasConcept C105795698 @default.
- W4294053533 hasConcept C107365816 @default.
- W4294053533 hasConcept C120665830 @default.
- W4294053533 hasConcept C121332964 @default.
- W4294053533 hasConcept C121864883 @default.