Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294057480> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4294057480 abstract "We present the lowest-order hybridizable discontinuous Galerkin schemes with numerical integration (quadrature), denoted as HDG-P0, for the reaction-diffusion equation and the generalized Stokes equations on conforming simplicial meshes in two- and three-dimensions. Here by lowest order, we mean that the (hybrid) finite element space for the global HDG facet degrees of freedom (DOFs) is the space of piecewise constants on the mesh skeleton. A discontinuous piecewise linear space is used for the approximation of the local primal unknowns. We give the optimal a priori error analysis of the proposed {sf HDG-P0} schemes, which hasn't appeared in the literature yet for HDG discretizations as far as numerical integration is concerned. Moreover, we propose optimal geometric multigrid preconditioners for the statically condensed HDG-P0 linear systems on conforming simplicial meshes. In both cases, we first establish the equivalence of the statically condensed HDG system with a (slightly modified) nonconforming Crouzeix-Raviart (CR) discretization, where the global (piecewise-constant) HDG finite element space on the mesh skeleton has a natural one-to-one correspondence to the nonconforming CR (piecewise-linear) finite element space that live on the whole mesh. This equivalence then allows us to use the well-established nonconforming geometry multigrid theory to precondition the condensed HDG system. Numerical results in two- and three-dimensions are presented to verify our theoretical findings." @default.
- W4294057480 created "2022-09-01" @default.
- W4294057480 creator A5041664447 @default.
- W4294057480 creator A5079330939 @default.
- W4294057480 date "2022-08-30" @default.
- W4294057480 modified "2023-09-23" @default.
- W4294057480 title "Optimal geometric multigrid preconditioners for HDG-P0 schemes for the reaction-diffusion equation and the generalized Stokes equations" @default.
- W4294057480 doi "https://doi.org/10.48550/arxiv.2208.14418" @default.
- W4294057480 hasPublicationYear "2022" @default.
- W4294057480 type Work @default.
- W4294057480 citedByCount "0" @default.
- W4294057480 crossrefType "posted-content" @default.
- W4294057480 hasAuthorship W4294057480A5041664447 @default.
- W4294057480 hasAuthorship W4294057480A5079330939 @default.
- W4294057480 hasBestOaLocation W42940574801 @default.
- W4294057480 hasConcept C121332964 @default.
- W4294057480 hasConcept C134306372 @default.
- W4294057480 hasConcept C135628077 @default.
- W4294057480 hasConcept C137119250 @default.
- W4294057480 hasConcept C164660894 @default.
- W4294057480 hasConcept C17095337 @default.
- W4294057480 hasConcept C2524010 @default.
- W4294057480 hasConcept C28826006 @default.
- W4294057480 hasConcept C31487907 @default.
- W4294057480 hasConcept C33923547 @default.
- W4294057480 hasConcept C73000952 @default.
- W4294057480 hasConcept C92244383 @default.
- W4294057480 hasConcept C93779851 @default.
- W4294057480 hasConcept C97355855 @default.
- W4294057480 hasConceptScore W4294057480C121332964 @default.
- W4294057480 hasConceptScore W4294057480C134306372 @default.
- W4294057480 hasConceptScore W4294057480C135628077 @default.
- W4294057480 hasConceptScore W4294057480C137119250 @default.
- W4294057480 hasConceptScore W4294057480C164660894 @default.
- W4294057480 hasConceptScore W4294057480C17095337 @default.
- W4294057480 hasConceptScore W4294057480C2524010 @default.
- W4294057480 hasConceptScore W4294057480C28826006 @default.
- W4294057480 hasConceptScore W4294057480C31487907 @default.
- W4294057480 hasConceptScore W4294057480C33923547 @default.
- W4294057480 hasConceptScore W4294057480C73000952 @default.
- W4294057480 hasConceptScore W4294057480C92244383 @default.
- W4294057480 hasConceptScore W4294057480C93779851 @default.
- W4294057480 hasConceptScore W4294057480C97355855 @default.
- W4294057480 hasLocation W42940574801 @default.
- W4294057480 hasOpenAccess W4294057480 @default.
- W4294057480 hasPrimaryLocation W42940574801 @default.
- W4294057480 hasRelatedWork W1607053641 @default.
- W4294057480 hasRelatedWork W1977399978 @default.
- W4294057480 hasRelatedWork W2089181747 @default.
- W4294057480 hasRelatedWork W2253833194 @default.
- W4294057480 hasRelatedWork W2965585506 @default.
- W4294057480 hasRelatedWork W2983534281 @default.
- W4294057480 hasRelatedWork W3011961796 @default.
- W4294057480 hasRelatedWork W3048668404 @default.
- W4294057480 hasRelatedWork W3090384263 @default.
- W4294057480 hasRelatedWork W3215603717 @default.
- W4294057480 isParatext "false" @default.
- W4294057480 isRetracted "false" @default.
- W4294057480 workType "article" @default.