Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294114281> ?p ?o ?g. }
- W4294114281 endingPage "100387" @default.
- W4294114281 startingPage "100387" @default.
- W4294114281 abstract "There is growing interest in energy-efficient production scheduling research because of the increasing energy shortage. However, most existing studies along this line of research have not considered the energy consumed by automated guided vehicles (AGVs) used in modern smart factories for production scheduling purposes. In this paper, we study an energy-efficient open-shop scheduling problem with multiple AGVs and deteriorating jobs. A multi-objective model with four objectives is formulated, aiming to simultaneously minimise the maximum ending time of all AGVs, the total idle time of machines and AGVs, the total tardiness of jobs, and the total energy consumption of machines and AGVs. An improved population-based multi-objective differential evolution (IMODE) algorithm is developed to solve the problem. The IMODE makes use of a problem feature-based heuristic and a mean entropy method to enhance the diversity of its initial population. A novel grey entropy parallel analysis-based fitness evaluation mechanism with reference points is adopted to evaluate the candidate solutions. To improve the local search ability of IMODE, a multi-level local search strategy is used. In the experimental study, Taguchi analysis is employed to obtain the best parameter combination. The effects of the main components of IMODE are validated via comprehensive comparison experiments. Extensive experimental results show that the IMODE is preferable to other well-known multi-objective algorithms at solving the problem being considered." @default.
- W4294114281 created "2022-09-02" @default.
- W4294114281 creator A5025872026 @default.
- W4294114281 creator A5027845071 @default.
- W4294114281 creator A5062938275 @default.
- W4294114281 date "2022-11-01" @default.
- W4294114281 modified "2023-10-13" @default.
- W4294114281 title "Energy-efficient open-shop scheduling with multiple automated guided vehicles and deteriorating jobs" @default.
- W4294114281 cites W1595159159 @default.
- W4294114281 cites W1810830047 @default.
- W4294114281 cites W1971498253 @default.
- W4294114281 cites W1972888404 @default.
- W4294114281 cites W1975069904 @default.
- W4294114281 cites W1983350566 @default.
- W4294114281 cites W1988592128 @default.
- W4294114281 cites W1992381113 @default.
- W4294114281 cites W1999864079 @default.
- W4294114281 cites W2000435640 @default.
- W4294114281 cites W2001612470 @default.
- W4294114281 cites W2001808054 @default.
- W4294114281 cites W2022485595 @default.
- W4294114281 cites W2031012003 @default.
- W4294114281 cites W2044907449 @default.
- W4294114281 cites W2063774859 @default.
- W4294114281 cites W2066555597 @default.
- W4294114281 cites W2070197544 @default.
- W4294114281 cites W2074287473 @default.
- W4294114281 cites W2075590935 @default.
- W4294114281 cites W2092994132 @default.
- W4294114281 cites W2093229192 @default.
- W4294114281 cites W2126105956 @default.
- W4294114281 cites W2128130220 @default.
- W4294114281 cites W2137340504 @default.
- W4294114281 cites W2143381319 @default.
- W4294114281 cites W2151309978 @default.
- W4294114281 cites W2161644760 @default.
- W4294114281 cites W2261066338 @default.
- W4294114281 cites W2329354063 @default.
- W4294114281 cites W2339929657 @default.
- W4294114281 cites W2568704089 @default.
- W4294114281 cites W2606846577 @default.
- W4294114281 cites W2737943914 @default.
- W4294114281 cites W2751747478 @default.
- W4294114281 cites W2767334896 @default.
- W4294114281 cites W2782628021 @default.
- W4294114281 cites W2785512376 @default.
- W4294114281 cites W2792765706 @default.
- W4294114281 cites W2796372273 @default.
- W4294114281 cites W2801016318 @default.
- W4294114281 cites W2897029503 @default.
- W4294114281 cites W2901460396 @default.
- W4294114281 cites W2904387011 @default.
- W4294114281 cites W2916049207 @default.
- W4294114281 cites W2939395981 @default.
- W4294114281 cites W2959554262 @default.
- W4294114281 cites W2970875053 @default.
- W4294114281 cites W2972396893 @default.
- W4294114281 cites W2973019706 @default.
- W4294114281 cites W2989649775 @default.
- W4294114281 cites W2990559378 @default.
- W4294114281 cites W2999485303 @default.
- W4294114281 cites W3007877144 @default.
- W4294114281 cites W3013317327 @default.
- W4294114281 cites W3023582503 @default.
- W4294114281 cites W3039349443 @default.
- W4294114281 cites W3043752008 @default.
- W4294114281 cites W3108272015 @default.
- W4294114281 cites W3128122525 @default.
- W4294114281 cites W3179053552 @default.
- W4294114281 cites W4286383463 @default.
- W4294114281 cites W4313055249 @default.
- W4294114281 cites W826685547 @default.
- W4294114281 doi "https://doi.org/10.1016/j.jii.2022.100387" @default.
- W4294114281 hasPublicationYear "2022" @default.
- W4294114281 type Work @default.
- W4294114281 citedByCount "2" @default.
- W4294114281 countsByYear W42941142812023 @default.
- W4294114281 crossrefType "journal-article" @default.
- W4294114281 hasAuthorship W4294114281A5025872026 @default.
- W4294114281 hasAuthorship W4294114281A5027845071 @default.
- W4294114281 hasAuthorship W4294114281A5062938275 @default.
- W4294114281 hasConcept C106301342 @default.
- W4294114281 hasConcept C111919701 @default.
- W4294114281 hasConcept C119599485 @default.
- W4294114281 hasConcept C119857082 @default.
- W4294114281 hasConcept C121332964 @default.
- W4294114281 hasConcept C126255220 @default.
- W4294114281 hasConcept C127413603 @default.
- W4294114281 hasConcept C144024400 @default.
- W4294114281 hasConcept C149923435 @default.
- W4294114281 hasConcept C158336966 @default.
- W4294114281 hasConcept C206729178 @default.
- W4294114281 hasConcept C2778047078 @default.
- W4294114281 hasConcept C2780165032 @default.
- W4294114281 hasConcept C2908647359 @default.
- W4294114281 hasConcept C33923547 @default.
- W4294114281 hasConcept C41008148 @default.
- W4294114281 hasConcept C55416958 @default.