Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294132562> ?p ?o ?g. }
- W4294132562 endingPage "8791" @default.
- W4294132562 startingPage "8791" @default.
- W4294132562 abstract "This study investigated the relationships between the electrical and selected mechanical properties of soil. The analyses focused on comparing various modeling relationships under study methods that included machine learning methods. The input parameters of the models were apparent soil electrical conductivity and magnetic susceptibility measured at depths of 0.5 m and 1 m. Based on the models, shear stress and soil compaction were predicted. Neural network models outperformed support vector machines and multiple linear regression techniques. Exceptional models were developed using a multilayer perceptron neural network for shear stress (R = 0.680) and a function neural network for soil compaction measured at a depth of 0–0.5 m and 0.4–0.5 m (R = 0.812 and R = 0.846, respectively). Models of very low accuracy (R < 0.5) were produced by the multiple linear regression." @default.
- W4294132562 created "2022-09-02" @default.
- W4294132562 creator A5005271214 @default.
- W4294132562 creator A5040485583 @default.
- W4294132562 creator A5058909401 @default.
- W4294132562 creator A5071355593 @default.
- W4294132562 creator A5073016623 @default.
- W4294132562 date "2022-09-01" @default.
- W4294132562 modified "2023-09-25" @default.
- W4294132562 title "Evaluation of Multiple Linear Regression and Machine Learning Approaches to Predict Soil Compaction and Shear Stress Based on Electrical Parameters" @default.
- W4294132562 cites W1486157515 @default.
- W4294132562 cites W1486527837 @default.
- W4294132562 cites W1964318214 @default.
- W4294132562 cites W1968407357 @default.
- W4294132562 cites W1971350852 @default.
- W4294132562 cites W1971366864 @default.
- W4294132562 cites W1980259109 @default.
- W4294132562 cites W1981797584 @default.
- W4294132562 cites W1983442767 @default.
- W4294132562 cites W1989788683 @default.
- W4294132562 cites W2028003655 @default.
- W4294132562 cites W2040796976 @default.
- W4294132562 cites W2044761976 @default.
- W4294132562 cites W2054439762 @default.
- W4294132562 cites W2060571129 @default.
- W4294132562 cites W2064693269 @default.
- W4294132562 cites W2087658390 @default.
- W4294132562 cites W2096861041 @default.
- W4294132562 cites W2103910316 @default.
- W4294132562 cites W2108481219 @default.
- W4294132562 cites W2134910002 @default.
- W4294132562 cites W2135000250 @default.
- W4294132562 cites W2157371502 @default.
- W4294132562 cites W2418482227 @default.
- W4294132562 cites W2578845828 @default.
- W4294132562 cites W2582794771 @default.
- W4294132562 cites W2737177700 @default.
- W4294132562 cites W2790904800 @default.
- W4294132562 cites W2891718839 @default.
- W4294132562 cites W2909099826 @default.
- W4294132562 cites W2918084323 @default.
- W4294132562 cites W2968016244 @default.
- W4294132562 cites W2981284634 @default.
- W4294132562 cites W2987256200 @default.
- W4294132562 cites W2990219572 @default.
- W4294132562 cites W3000135782 @default.
- W4294132562 cites W3005308434 @default.
- W4294132562 cites W3006440708 @default.
- W4294132562 cites W3024786881 @default.
- W4294132562 cites W3031793935 @default.
- W4294132562 cites W3046811879 @default.
- W4294132562 cites W3098374988 @default.
- W4294132562 cites W3127265503 @default.
- W4294132562 cites W3134743308 @default.
- W4294132562 cites W3135664723 @default.
- W4294132562 cites W3136885625 @default.
- W4294132562 cites W3139042865 @default.
- W4294132562 cites W3158102918 @default.
- W4294132562 cites W3159743384 @default.
- W4294132562 cites W3168812786 @default.
- W4294132562 cites W3182360843 @default.
- W4294132562 cites W3187107449 @default.
- W4294132562 cites W3194799356 @default.
- W4294132562 cites W3199546671 @default.
- W4294132562 cites W3204072550 @default.
- W4294132562 cites W3204381192 @default.
- W4294132562 cites W3207965715 @default.
- W4294132562 cites W3213876442 @default.
- W4294132562 cites W3216355276 @default.
- W4294132562 cites W4210241985 @default.
- W4294132562 cites W4213094186 @default.
- W4294132562 cites W4280566799 @default.
- W4294132562 cites W4281641828 @default.
- W4294132562 cites W4285095149 @default.
- W4294132562 doi "https://doi.org/10.3390/app12178791" @default.
- W4294132562 hasPublicationYear "2022" @default.
- W4294132562 type Work @default.
- W4294132562 citedByCount "11" @default.
- W4294132562 countsByYear W42941325622022 @default.
- W4294132562 countsByYear W42941325622023 @default.
- W4294132562 crossrefType "journal-article" @default.
- W4294132562 hasAuthorship W4294132562A5005271214 @default.
- W4294132562 hasAuthorship W4294132562A5040485583 @default.
- W4294132562 hasAuthorship W4294132562A5058909401 @default.
- W4294132562 hasAuthorship W4294132562A5071355593 @default.
- W4294132562 hasAuthorship W4294132562A5073016623 @default.
- W4294132562 hasBestOaLocation W42941325621 @default.
- W4294132562 hasConcept C119857082 @default.
- W4294132562 hasConcept C12267149 @default.
- W4294132562 hasConcept C127313418 @default.
- W4294132562 hasConcept C152877465 @default.
- W4294132562 hasConcept C154945302 @default.
- W4294132562 hasConcept C159390177 @default.
- W4294132562 hasConcept C159985019 @default.
- W4294132562 hasConcept C187320778 @default.
- W4294132562 hasConcept C192562407 @default.
- W4294132562 hasConcept C196715460 @default.
- W4294132562 hasConcept C21141959 @default.