Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294142783> ?p ?o ?g. }
- W4294142783 endingPage "1353" @default.
- W4294142783 startingPage "1353" @default.
- W4294142783 abstract "Gaussian process regression (GPR) can effectively solve the problem of high-dimensional modeling with a small sample size. However, there is a lack of studies comparing GPR with other methods for leaf area index (LAI) inversion using hyperspectral data. In this study, winter wheat was used as the research material to evaluate performance of different methods for LAI inversion, i.e., GPR, an artificial neural network (ANN), partial least squares regression (PLSR) and the spectral index (SI). To this end, a 2-year water and nitrogen coupled experiment was conducted, and canopy hyperspectral and LAI data were measured at the critical growth stages of wheat. Based on these data, calibration and validation datasets were obtained, and the LAI prediction model was constructed using the above four methods and validated. The results showed that the LAI inversion models of the SI were the least effective compared with other methods, with R2 and RMSE ranging from 0.42–0.76 and 0.80–1.04 during calibration and R2 and RMSE ranging from 0.37–0.55 and 0.94–1.09 during validation. The ANN and GPR had the best results, with R2 of 0.89 and 0.85 and RMSE of 0.46 and 0.53 during calibration and R2 of 0.74 and 0.71 and RMSE of both 0.74 during validation. The PLSR had intermediate LAI inversion results, with R2 and RMSE values of 0.80 and 0.61 during calibration and R2 and RMSE values of 0.67 and 0.80 during validation. Thus, the ANN and GPR methods were recommended for LAI inversion of winter wheat." @default.
- W4294142783 created "2022-09-02" @default.
- W4294142783 creator A5050384919 @default.
- W4294142783 creator A5067114624 @default.
- W4294142783 creator A5073435344 @default.
- W4294142783 date "2022-09-01" @default.
- W4294142783 modified "2023-09-30" @default.
- W4294142783 title "Comparing Different Methods for Wheat LAI Inversion Based on Hyperspectral Data" @default.
- W4294142783 cites W1826962995 @default.
- W4294142783 cites W1827322724 @default.
- W4294142783 cites W1984565260 @default.
- W4294142783 cites W1986812364 @default.
- W4294142783 cites W1990361669 @default.
- W4294142783 cites W1998997260 @default.
- W4294142783 cites W2000102737 @default.
- W4294142783 cites W2000613913 @default.
- W4294142783 cites W2012686349 @default.
- W4294142783 cites W2020205401 @default.
- W4294142783 cites W2027197837 @default.
- W4294142783 cites W2052256290 @default.
- W4294142783 cites W2070564279 @default.
- W4294142783 cites W2093303536 @default.
- W4294142783 cites W2150853404 @default.
- W4294142783 cites W2151647593 @default.
- W4294142783 cites W2167248655 @default.
- W4294142783 cites W2301262366 @default.
- W4294142783 cites W2321716099 @default.
- W4294142783 cites W2498515979 @default.
- W4294142783 cites W2514809712 @default.
- W4294142783 cites W2559680241 @default.
- W4294142783 cites W2567650967 @default.
- W4294142783 cites W2600798029 @default.
- W4294142783 cites W2771011869 @default.
- W4294142783 cites W2772052982 @default.
- W4294142783 cites W2884438462 @default.
- W4294142783 cites W2911694020 @default.
- W4294142783 cites W2980312226 @default.
- W4294142783 cites W2993386807 @default.
- W4294142783 cites W3000369451 @default.
- W4294142783 cites W3008109610 @default.
- W4294142783 cites W3010955769 @default.
- W4294142783 cites W3014989622 @default.
- W4294142783 cites W3019517659 @default.
- W4294142783 cites W3068524501 @default.
- W4294142783 cites W3093660509 @default.
- W4294142783 cites W3098958405 @default.
- W4294142783 cites W3129247730 @default.
- W4294142783 cites W3171175358 @default.
- W4294142783 cites W9910819 @default.
- W4294142783 doi "https://doi.org/10.3390/agriculture12091353" @default.
- W4294142783 hasPublicationYear "2022" @default.
- W4294142783 type Work @default.
- W4294142783 citedByCount "5" @default.
- W4294142783 countsByYear W42941427832023 @default.
- W4294142783 crossrefType "journal-article" @default.
- W4294142783 hasAuthorship W4294142783A5050384919 @default.
- W4294142783 hasAuthorship W4294142783A5067114624 @default.
- W4294142783 hasAuthorship W4294142783A5073435344 @default.
- W4294142783 hasBestOaLocation W42941427831 @default.
- W4294142783 hasConcept C105795698 @default.
- W4294142783 hasConcept C127313418 @default.
- W4294142783 hasConcept C139945424 @default.
- W4294142783 hasConcept C159078339 @default.
- W4294142783 hasConcept C165838908 @default.
- W4294142783 hasConcept C22354355 @default.
- W4294142783 hasConcept C25989453 @default.
- W4294142783 hasConcept C33923547 @default.
- W4294142783 hasConcept C39432304 @default.
- W4294142783 hasConcept C62649853 @default.
- W4294142783 hasConcept C6557445 @default.
- W4294142783 hasConcept C81692654 @default.
- W4294142783 hasConcept C86803240 @default.
- W4294142783 hasConceptScore W4294142783C105795698 @default.
- W4294142783 hasConceptScore W4294142783C127313418 @default.
- W4294142783 hasConceptScore W4294142783C139945424 @default.
- W4294142783 hasConceptScore W4294142783C159078339 @default.
- W4294142783 hasConceptScore W4294142783C165838908 @default.
- W4294142783 hasConceptScore W4294142783C22354355 @default.
- W4294142783 hasConceptScore W4294142783C25989453 @default.
- W4294142783 hasConceptScore W4294142783C33923547 @default.
- W4294142783 hasConceptScore W4294142783C39432304 @default.
- W4294142783 hasConceptScore W4294142783C62649853 @default.
- W4294142783 hasConceptScore W4294142783C6557445 @default.
- W4294142783 hasConceptScore W4294142783C81692654 @default.
- W4294142783 hasConceptScore W4294142783C86803240 @default.
- W4294142783 hasFunder F4320321001 @default.
- W4294142783 hasIssue "9" @default.
- W4294142783 hasLocation W42941427831 @default.
- W4294142783 hasOpenAccess W4294142783 @default.
- W4294142783 hasPrimaryLocation W42941427831 @default.
- W4294142783 hasRelatedWork W2030334626 @default.
- W4294142783 hasRelatedWork W2065968650 @default.
- W4294142783 hasRelatedWork W2147013722 @default.
- W4294142783 hasRelatedWork W2362061927 @default.
- W4294142783 hasRelatedWork W2366449082 @default.
- W4294142783 hasRelatedWork W2482643924 @default.
- W4294142783 hasRelatedWork W2546725324 @default.
- W4294142783 hasRelatedWork W2547110604 @default.