Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294167326> ?p ?o ?g. }
- W4294167326 endingPage "94402" @default.
- W4294167326 startingPage "94388" @default.
- W4294167326 abstract "Recent regulations to block the widespread transmission of COVID-19 disease among people impose the use of facial masks indoor and outdoor. Such restriction becomes critical in all those scenarios where access controls take benefit from biometric recognition systems. The occlusions due to the presence of a facial mask make a significant portion of human faces unavailable for feature extraction and analysis. This work explores the contribution of the solely periocular region of the face to achieve a robust recognition approach suitable for mobile devices. Rather than working on a static analysis of the facial features, like largely done by work on periocular recognition in the literature, the proposed study focuses the attention on the analysis of face dynamics so that the spatio-temporal features make the recogniser frame-independent and tolerant to user movements during the acquisition. To obtain a lightweight processing, which is compliant with limited computing power of mobile devices, the spatio-temporal representation of the periocular region has analysed and classified through Machine Learning approaches. The experimental discussion has been performed on a new dataset, Mobile Masked Face REcognition Database, specifically designed to analyse the periocular region dynamics in presence of facial masks. For a wider comparative analysis, a publicly available dataset called XM2VTS has been considered as well as Deep Learning solutions have been experimented to discuss the challenging aspects of the recognition problem. Moreover, a summary of the state-of-the-art on periocular recognition driven by COVID pandemic has been presented, showing how the research efforts in this field focused on recognition of still images. Experimental results show promising levels of performance as well as limitations of the proposed approach, creating the premises for future directions." @default.
- W4294167326 created "2022-09-02" @default.
- W4294167326 creator A5034412164 @default.
- W4294167326 creator A5057168111 @default.
- W4294167326 creator A5059135159 @default.
- W4294167326 creator A5074877643 @default.
- W4294167326 date "2022-01-01" @default.
- W4294167326 modified "2023-10-16" @default.
- W4294167326 title "M2FRED: Mobile Masked Face REcognition Through Periocular Dynamics Analysis" @default.
- W4294167326 cites W1853137905 @default.
- W4294167326 cites W2003584106 @default.
- W4294167326 cites W2013988101 @default.
- W4294167326 cites W2057961664 @default.
- W4294167326 cites W2067641655 @default.
- W4294167326 cites W2081124312 @default.
- W4294167326 cites W2117690924 @default.
- W4294167326 cites W2134794961 @default.
- W4294167326 cites W2143717153 @default.
- W4294167326 cites W2152690956 @default.
- W4294167326 cites W2161969291 @default.
- W4294167326 cites W2163352848 @default.
- W4294167326 cites W2167615668 @default.
- W4294167326 cites W2181403657 @default.
- W4294167326 cites W2512214556 @default.
- W4294167326 cites W2559991176 @default.
- W4294167326 cites W2760342139 @default.
- W4294167326 cites W2767420072 @default.
- W4294167326 cites W2772196976 @default.
- W4294167326 cites W2805029945 @default.
- W4294167326 cites W2887808321 @default.
- W4294167326 cites W2951496350 @default.
- W4294167326 cites W2991500165 @default.
- W4294167326 cites W3042892367 @default.
- W4294167326 cites W3109940015 @default.
- W4294167326 cites W3120636043 @default.
- W4294167326 cites W3128406261 @default.
- W4294167326 cites W3134491709 @default.
- W4294167326 cites W3154303250 @default.
- W4294167326 cites W3197025345 @default.
- W4294167326 cites W3209804554 @default.
- W4294167326 cites W3212323791 @default.
- W4294167326 cites W4205972212 @default.
- W4294167326 cites W4206205659 @default.
- W4294167326 cites W4220908375 @default.
- W4294167326 doi "https://doi.org/10.1109/access.2022.3203579" @default.
- W4294167326 hasPublicationYear "2022" @default.
- W4294167326 type Work @default.
- W4294167326 citedByCount "5" @default.
- W4294167326 countsByYear W42941673262022 @default.
- W4294167326 countsByYear W42941673262023 @default.
- W4294167326 crossrefType "journal-article" @default.
- W4294167326 hasAuthorship W4294167326A5034412164 @default.
- W4294167326 hasAuthorship W4294167326A5057168111 @default.
- W4294167326 hasAuthorship W4294167326A5059135159 @default.
- W4294167326 hasAuthorship W4294167326A5074877643 @default.
- W4294167326 hasBestOaLocation W42941673261 @default.
- W4294167326 hasConcept C111919701 @default.
- W4294167326 hasConcept C119857082 @default.
- W4294167326 hasConcept C138885662 @default.
- W4294167326 hasConcept C144024400 @default.
- W4294167326 hasConcept C153180895 @default.
- W4294167326 hasConcept C154945302 @default.
- W4294167326 hasConcept C184297639 @default.
- W4294167326 hasConcept C186967261 @default.
- W4294167326 hasConcept C202444582 @default.
- W4294167326 hasConcept C2524010 @default.
- W4294167326 hasConcept C2776401178 @default.
- W4294167326 hasConcept C2777210771 @default.
- W4294167326 hasConcept C2779304628 @default.
- W4294167326 hasConcept C31510193 @default.
- W4294167326 hasConcept C31972630 @default.
- W4294167326 hasConcept C33923547 @default.
- W4294167326 hasConcept C36289849 @default.
- W4294167326 hasConcept C41008148 @default.
- W4294167326 hasConcept C41895202 @default.
- W4294167326 hasConcept C4641261 @default.
- W4294167326 hasConcept C52622490 @default.
- W4294167326 hasConcept C88799230 @default.
- W4294167326 hasConcept C9652623 @default.
- W4294167326 hasConceptScore W4294167326C111919701 @default.
- W4294167326 hasConceptScore W4294167326C119857082 @default.
- W4294167326 hasConceptScore W4294167326C138885662 @default.
- W4294167326 hasConceptScore W4294167326C144024400 @default.
- W4294167326 hasConceptScore W4294167326C153180895 @default.
- W4294167326 hasConceptScore W4294167326C154945302 @default.
- W4294167326 hasConceptScore W4294167326C184297639 @default.
- W4294167326 hasConceptScore W4294167326C186967261 @default.
- W4294167326 hasConceptScore W4294167326C202444582 @default.
- W4294167326 hasConceptScore W4294167326C2524010 @default.
- W4294167326 hasConceptScore W4294167326C2776401178 @default.
- W4294167326 hasConceptScore W4294167326C2777210771 @default.
- W4294167326 hasConceptScore W4294167326C2779304628 @default.
- W4294167326 hasConceptScore W4294167326C31510193 @default.
- W4294167326 hasConceptScore W4294167326C31972630 @default.
- W4294167326 hasConceptScore W4294167326C33923547 @default.
- W4294167326 hasConceptScore W4294167326C36289849 @default.
- W4294167326 hasConceptScore W4294167326C41008148 @default.
- W4294167326 hasConceptScore W4294167326C41895202 @default.