Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294168640> ?p ?o ?g. }
- W4294168640 endingPage "106848" @default.
- W4294168640 startingPage "106848" @default.
- W4294168640 abstract "A three-dimensional (3D) discrete fracture network (DFN) was generated to evaluate the representative elementary volume (REV) of granitic rock masses based on the statistical geometry parameters mapped from outcrop surveys at the Xinchang site, China. Then, extensive numerical simulations were performed to investigate the effect of fracture density on the side length of models of the REV size ( L REV ). The relationship between L REV of 3D models and the geometric parameters of two-dimensional (2D) cutting planes parallel and perpendicular to the direction of hydraulic gradient variation were analyzed. This relationship was determined by calculating fluid flow through 90 original 3D models, 810 3D submodels, and 270 2D cutting models. Finally, two multivariable regression equations were proposed for predicting the L REV of the 3D fracture network and equivalent permeability of the REV size. The results show that the clustering results obtained from the 3D DFN model are similar to those obtained from field measurements. The values of L REV of the 3D DFN model based on statistical geometry parameters mapped from outcrops are 18.89 m, 19.56 m, and 24.86 m in three flow directions, respectively, which clearly highlights the anisotropic characteristics of fractured rock masses. The L REV decreases with increasing fracture density following an exponential relationship. The multivariable regression function estimates the evolution of the L REV of 3D DFN models with a wide range of fracture densities from 0.53 to 1.33 m/m 2 . The predicted results are more accurate than those predicted by the fitting function between the fracture density of 2D cutting planes perpendicular to the z -axis and L REV . The proposed model provides a method to approximate the L REV of 3D DFN models and equivalent permeability of the REV size ( K REV ) using geometric parameters of the 2D cutting planes obtained from trace map analysis of fractured rock masses. • Fluid flow through 3D DFNs was modeled using in-situ statistical geometric parameters and equivalent pipe method. • The REV size was estimated for DFNs with different fracture densities. • Multi-variable regression functions were proposed to predict the REV and equivalent permeability at the REV size." @default.
- W4294168640 created "2022-09-02" @default.
- W4294168640 creator A5008888331 @default.
- W4294168640 creator A5017914683 @default.
- W4294168640 creator A5017947172 @default.
- W4294168640 creator A5021507597 @default.
- W4294168640 creator A5048473316 @default.
- W4294168640 creator A5086939495 @default.
- W4294168640 date "2022-11-01" @default.
- W4294168640 modified "2023-10-07" @default.
- W4294168640 title "Estimation of the representative elementary volume of three-dimensional fracture networks based on permeability and trace map analysis: A case study" @default.
- W4294168640 cites W1501105405 @default.
- W4294168640 cites W1628330510 @default.
- W4294168640 cites W1665316539 @default.
- W4294168640 cites W1679030178 @default.
- W4294168640 cites W1764265257 @default.
- W4294168640 cites W1979582182 @default.
- W4294168640 cites W1981810711 @default.
- W4294168640 cites W1993776068 @default.
- W4294168640 cites W2011462320 @default.
- W4294168640 cites W2015803305 @default.
- W4294168640 cites W2020478857 @default.
- W4294168640 cites W2027095111 @default.
- W4294168640 cites W2046384101 @default.
- W4294168640 cites W2058107356 @default.
- W4294168640 cites W2071864725 @default.
- W4294168640 cites W2075038261 @default.
- W4294168640 cites W2085220875 @default.
- W4294168640 cites W2169565025 @default.
- W4294168640 cites W2253126709 @default.
- W4294168640 cites W2255829157 @default.
- W4294168640 cites W2491515892 @default.
- W4294168640 cites W2585527360 @default.
- W4294168640 cites W2612850854 @default.
- W4294168640 cites W2784017223 @default.
- W4294168640 cites W2794216169 @default.
- W4294168640 cites W2810614218 @default.
- W4294168640 cites W2810896219 @default.
- W4294168640 cites W2887431094 @default.
- W4294168640 cites W2889430035 @default.
- W4294168640 cites W2900913575 @default.
- W4294168640 cites W2903910630 @default.
- W4294168640 cites W2996432978 @default.
- W4294168640 cites W3001810617 @default.
- W4294168640 cites W3003683119 @default.
- W4294168640 cites W3005617257 @default.
- W4294168640 cites W3008449650 @default.
- W4294168640 cites W3171319214 @default.
- W4294168640 cites W3177085146 @default.
- W4294168640 cites W4280548172 @default.
- W4294168640 doi "https://doi.org/10.1016/j.enggeo.2022.106848" @default.
- W4294168640 hasPublicationYear "2022" @default.
- W4294168640 type Work @default.
- W4294168640 citedByCount "5" @default.
- W4294168640 countsByYear W42941686402022 @default.
- W4294168640 countsByYear W42941686402023 @default.
- W4294168640 crossrefType "journal-article" @default.
- W4294168640 hasAuthorship W4294168640A5008888331 @default.
- W4294168640 hasAuthorship W4294168640A5017914683 @default.
- W4294168640 hasAuthorship W4294168640A5017947172 @default.
- W4294168640 hasAuthorship W4294168640A5021507597 @default.
- W4294168640 hasAuthorship W4294168640A5048473316 @default.
- W4294168640 hasAuthorship W4294168640A5086939495 @default.
- W4294168640 hasConcept C105795698 @default.
- W4294168640 hasConcept C120882062 @default.
- W4294168640 hasConcept C121332964 @default.
- W4294168640 hasConcept C127313418 @default.
- W4294168640 hasConcept C138885662 @default.
- W4294168640 hasConcept C159390177 @default.
- W4294168640 hasConcept C185592680 @default.
- W4294168640 hasConcept C187320778 @default.
- W4294168640 hasConcept C20556612 @default.
- W4294168640 hasConcept C33923547 @default.
- W4294168640 hasConcept C41625074 @default.
- W4294168640 hasConcept C41895202 @default.
- W4294168640 hasConcept C43369102 @default.
- W4294168640 hasConcept C55493867 @default.
- W4294168640 hasConcept C62520636 @default.
- W4294168640 hasConcept C75291252 @default.
- W4294168640 hasConcept C78762247 @default.
- W4294168640 hasConceptScore W4294168640C105795698 @default.
- W4294168640 hasConceptScore W4294168640C120882062 @default.
- W4294168640 hasConceptScore W4294168640C121332964 @default.
- W4294168640 hasConceptScore W4294168640C127313418 @default.
- W4294168640 hasConceptScore W4294168640C138885662 @default.
- W4294168640 hasConceptScore W4294168640C159390177 @default.
- W4294168640 hasConceptScore W4294168640C185592680 @default.
- W4294168640 hasConceptScore W4294168640C187320778 @default.
- W4294168640 hasConceptScore W4294168640C20556612 @default.
- W4294168640 hasConceptScore W4294168640C33923547 @default.
- W4294168640 hasConceptScore W4294168640C41625074 @default.
- W4294168640 hasConceptScore W4294168640C41895202 @default.
- W4294168640 hasConceptScore W4294168640C43369102 @default.
- W4294168640 hasConceptScore W4294168640C55493867 @default.
- W4294168640 hasConceptScore W4294168640C62520636 @default.
- W4294168640 hasConceptScore W4294168640C75291252 @default.
- W4294168640 hasConceptScore W4294168640C78762247 @default.
- W4294168640 hasFunder F4320321001 @default.