Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294203388> ?p ?o ?g. }
- W4294203388 abstract "In this paper, the application of machine learning and deep learning in the spectral analysis of multicomponent gas mixtures is considered. The experimental setup consists of a quantum cascade laser with a tuning range of 5.3–12.8 µm, a peak power of up to 150 mW, and an astigmatic Herriott gas cell with an optical path length of up to 76 m. Acetone, ethanol, methanol, and their mixtures are used as test substances. For the detection and clustering of substances, including molecular biomarkers, methods of machine learning, such as stochastic embedding of neighbors with a t-distribution, principal component analysis and classification methods, such as random forest, gradient boosting, and logistic regression, are proposed. A shallow convolutional neural network based on TensorFlow (Google) and Keras is used for the spectral analysis of gas mixtures. Model spectra of substances are used as a training sample, and model and experimental spectra are used as a test sample. It is shown that neural networks trained on model spectra (NIST database) can recognize substances in experimental gas mixtures. We propose using machine learning methods for clustering and classification of pure substances and gas mixtures and neural networks for the identification of gas mixture components. Using the experimental setup described, the experimentally obtained concentration limits are 80 ppb for acetone and 100–120 ppb for ethanol and methanol. The possibility of using the proposed methods for analyzing spectra of human exhaled air is shown, which is significant for biomedical applications." @default.
- W4294203388 created "2022-09-02" @default.
- W4294203388 creator A5021749560 @default.
- W4294203388 creator A5022773182 @default.
- W4294203388 creator A5024651419 @default.
- W4294203388 creator A5045109920 @default.
- W4294203388 creator A5046040008 @default.
- W4294203388 creator A5050561789 @default.
- W4294203388 creator A5051616216 @default.
- W4294203388 creator A5084947062 @default.
- W4294203388 date "2022-08-01" @default.
- W4294203388 modified "2023-10-01" @default.
- W4294203388 title "Numerical methods of spectral analysis of multicomponent gas mixtures and human exhaled breath" @default.
- W4294203388 cites W1905949713 @default.
- W4294203388 cites W1976113475 @default.
- W4294203388 cites W1977511355 @default.
- W4294203388 cites W1984109618 @default.
- W4294203388 cites W1987733555 @default.
- W4294203388 cites W2000703036 @default.
- W4294203388 cites W2023002358 @default.
- W4294203388 cites W2040292825 @default.
- W4294203388 cites W2043207308 @default.
- W4294203388 cites W2082819135 @default.
- W4294203388 cites W2333523612 @default.
- W4294203388 cites W2624912387 @default.
- W4294203388 cites W2770189759 @default.
- W4294203388 cites W2770899742 @default.
- W4294203388 cites W2803295883 @default.
- W4294203388 cites W2811117727 @default.
- W4294203388 cites W2888824755 @default.
- W4294203388 cites W2911964244 @default.
- W4294203388 cites W2918516410 @default.
- W4294203388 cites W2983281439 @default.
- W4294203388 cites W2984048779 @default.
- W4294203388 cites W3006667532 @default.
- W4294203388 cites W3014382582 @default.
- W4294203388 cites W3021188949 @default.
- W4294203388 cites W3024406975 @default.
- W4294203388 cites W3092448323 @default.
- W4294203388 cites W3134313309 @default.
- W4294203388 cites W4206050431 @default.
- W4294203388 cites W2115015612 @default.
- W4294203388 doi "https://doi.org/10.18287/2412-6179-co-1058" @default.
- W4294203388 hasPublicationYear "2022" @default.
- W4294203388 type Work @default.
- W4294203388 citedByCount "2" @default.
- W4294203388 countsByYear W42942033882023 @default.
- W4294203388 crossrefType "journal-article" @default.
- W4294203388 hasAuthorship W4294203388A5021749560 @default.
- W4294203388 hasAuthorship W4294203388A5022773182 @default.
- W4294203388 hasAuthorship W4294203388A5024651419 @default.
- W4294203388 hasAuthorship W4294203388A5045109920 @default.
- W4294203388 hasAuthorship W4294203388A5046040008 @default.
- W4294203388 hasAuthorship W4294203388A5050561789 @default.
- W4294203388 hasAuthorship W4294203388A5051616216 @default.
- W4294203388 hasAuthorship W4294203388A5084947062 @default.
- W4294203388 hasBestOaLocation W42942033881 @default.
- W4294203388 hasConcept C111219384 @default.
- W4294203388 hasConcept C121332964 @default.
- W4294203388 hasConcept C1276947 @default.
- W4294203388 hasConcept C153180895 @default.
- W4294203388 hasConcept C154945302 @default.
- W4294203388 hasConcept C169258074 @default.
- W4294203388 hasConcept C178790620 @default.
- W4294203388 hasConcept C185592680 @default.
- W4294203388 hasConcept C186060115 @default.
- W4294203388 hasConcept C27438332 @default.
- W4294203388 hasConcept C2779607525 @default.
- W4294203388 hasConcept C28490314 @default.
- W4294203388 hasConcept C41008148 @default.
- W4294203388 hasConcept C4839761 @default.
- W4294203388 hasConcept C50644808 @default.
- W4294203388 hasConcept C86803240 @default.
- W4294203388 hasConceptScore W4294203388C111219384 @default.
- W4294203388 hasConceptScore W4294203388C121332964 @default.
- W4294203388 hasConceptScore W4294203388C1276947 @default.
- W4294203388 hasConceptScore W4294203388C153180895 @default.
- W4294203388 hasConceptScore W4294203388C154945302 @default.
- W4294203388 hasConceptScore W4294203388C169258074 @default.
- W4294203388 hasConceptScore W4294203388C178790620 @default.
- W4294203388 hasConceptScore W4294203388C185592680 @default.
- W4294203388 hasConceptScore W4294203388C186060115 @default.
- W4294203388 hasConceptScore W4294203388C27438332 @default.
- W4294203388 hasConceptScore W4294203388C2779607525 @default.
- W4294203388 hasConceptScore W4294203388C28490314 @default.
- W4294203388 hasConceptScore W4294203388C41008148 @default.
- W4294203388 hasConceptScore W4294203388C4839761 @default.
- W4294203388 hasConceptScore W4294203388C50644808 @default.
- W4294203388 hasConceptScore W4294203388C86803240 @default.
- W4294203388 hasIssue "4" @default.
- W4294203388 hasLocation W42942033881 @default.
- W4294203388 hasLocation W42942033882 @default.
- W4294203388 hasOpenAccess W4294203388 @default.
- W4294203388 hasPrimaryLocation W42942033881 @default.
- W4294203388 hasRelatedWork W2085553065 @default.
- W4294203388 hasRelatedWork W2380927352 @default.
- W4294203388 hasRelatedWork W2552841680 @default.
- W4294203388 hasRelatedWork W2945364042 @default.
- W4294203388 hasRelatedWork W2964383635 @default.
- W4294203388 hasRelatedWork W3048981730 @default.