Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294233114> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4294233114 endingPage "156" @default.
- W4294233114 startingPage "147" @default.
- W4294233114 abstract "The death and injury rate of the construction industry is higher than the average level of other industries, and falls from heights account for a large share of the accidents. The automatic monitor of the harness-wearing condition of construction workers can alleviate this problem, but the traditional method such as wearing sensor equipment has many disadvantages, and previous research which used the computer vision methods rarely discussed the automatic monitor of harness-wearing under a specific dangerous scene. In this research, we attempted to analyze the effect of the automatic monitor of the harness-wearing condition using the latest computer vision technology and the feasibility of applying it in a specific scene. First, we set a scene in construction that the construction workers working on the mobile lifting platform (mlp) are detected to need to wear a harness, and we created a dataset about the worker, mlp, and harness for this research. Then we used an objects detection algorithm (YOLOv5) as a technical tool for experimental study, which showed that the mAP of the model was greater than 0.97, and the detection speed was between 9 ms/fps and 15 ms/fps, which met the real-time detection needs in a construction site. Besides, we added conditional detection to detect whether the worker needs to wear a harness and whether they are wearing a harness based on the position relation output on the images. The research in this paper presents a method to detect harness-wearing automatically in a specific scene of construction and shows that applying computer vision technology in specific construction activities has been feasible and valuable." @default.
- W4294233114 created "2022-09-02" @default.
- W4294233114 creator A5001747848 @default.
- W4294233114 creator A5036525093 @default.
- W4294233114 creator A5066718673 @default.
- W4294233114 date "2022-01-01" @default.
- W4294233114 modified "2023-09-30" @default.
- W4294233114 title "Harness-Wearing Detection of Construction Workers Based on Deep Learning" @default.
- W4294233114 cites W2015157914 @default.
- W4294233114 cites W2054484383 @default.
- W4294233114 cites W2138788982 @default.
- W4294233114 cites W2144560128 @default.
- W4294233114 cites W2167857963 @default.
- W4294233114 cites W2333181379 @default.
- W4294233114 cites W2761891891 @default.
- W4294233114 cites W2790722345 @default.
- W4294233114 cites W2958657326 @default.
- W4294233114 cites W3000144357 @default.
- W4294233114 doi "https://doi.org/10.1007/978-981-19-5256-2_13" @default.
- W4294233114 hasPublicationYear "2022" @default.
- W4294233114 type Work @default.
- W4294233114 citedByCount "0" @default.
- W4294233114 crossrefType "book-chapter" @default.
- W4294233114 hasAuthorship W4294233114A5001747848 @default.
- W4294233114 hasAuthorship W4294233114A5036525093 @default.
- W4294233114 hasAuthorship W4294233114A5066718673 @default.
- W4294233114 hasConcept C107053488 @default.
- W4294233114 hasConcept C127413603 @default.
- W4294233114 hasConcept C154945302 @default.
- W4294233114 hasConcept C177264268 @default.
- W4294233114 hasConcept C199360897 @default.
- W4294233114 hasConcept C2984708878 @default.
- W4294233114 hasConcept C31972630 @default.
- W4294233114 hasConcept C41008148 @default.
- W4294233114 hasConceptScore W4294233114C107053488 @default.
- W4294233114 hasConceptScore W4294233114C127413603 @default.
- W4294233114 hasConceptScore W4294233114C154945302 @default.
- W4294233114 hasConceptScore W4294233114C177264268 @default.
- W4294233114 hasConceptScore W4294233114C199360897 @default.
- W4294233114 hasConceptScore W4294233114C2984708878 @default.
- W4294233114 hasConceptScore W4294233114C31972630 @default.
- W4294233114 hasConceptScore W4294233114C41008148 @default.
- W4294233114 hasLocation W42942331141 @default.
- W4294233114 hasOpenAccess W4294233114 @default.
- W4294233114 hasPrimaryLocation W42942331141 @default.
- W4294233114 hasRelatedWork W1891287906 @default.
- W4294233114 hasRelatedWork W1969923398 @default.
- W4294233114 hasRelatedWork W2036807459 @default.
- W4294233114 hasRelatedWork W2058170566 @default.
- W4294233114 hasRelatedWork W2166024367 @default.
- W4294233114 hasRelatedWork W2229312674 @default.
- W4294233114 hasRelatedWork W2755342338 @default.
- W4294233114 hasRelatedWork W2772917594 @default.
- W4294233114 hasRelatedWork W2899084033 @default.
- W4294233114 hasRelatedWork W3116076068 @default.
- W4294233114 isParatext "false" @default.
- W4294233114 isRetracted "false" @default.
- W4294233114 workType "book-chapter" @default.