Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294237478> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4294237478 endingPage "186" @default.
- W4294237478 startingPage "175" @default.
- W4294237478 abstract "The process of classifying images involves grouping pixels with similar characteristics into one class or cluster. Traditional pixel-based classification methods such as support vector machine, random forest, and decision tree yield poor results for synthetic aperture radar imagery (SAR) because of limited spectral information. This chapter provides the results of a two-dimensional (2D)-convolutional neural network (CNN)-based classification using Sentinel-1 (SAR) data over the Central State Farm, Hissar, Haryana, India. Hyperparameters of 2D-CNN were optimized using Bayesian optimization. Several textural features derived from S1 data were also layer-stacked with both vertical–vertical (VV) and vertical–horizontal (VH) polarized images. Results suggest that using texture features obtained from both VV and VH images improved classification accuracy for the considered area." @default.
- W4294237478 created "2022-09-02" @default.
- W4294237478 creator A5023536844 @default.
- W4294237478 creator A5059529431 @default.
- W4294237478 creator A5085702695 @default.
- W4294237478 date "2022-01-01" @default.
- W4294237478 modified "2023-10-16" @default.
- W4294237478 title "Classification of Radar data using Bayesian optimized two-dimensional Convolutional Neural Network" @default.
- W4294237478 cites W1965362766 @default.
- W4294237478 cites W1974419126 @default.
- W4294237478 cites W1990653740 @default.
- W4294237478 cites W2012519352 @default.
- W4294237478 cites W2013360540 @default.
- W4294237478 cites W2038869049 @default.
- W4294237478 cites W2052605829 @default.
- W4294237478 cites W2063907334 @default.
- W4294237478 cites W2065800647 @default.
- W4294237478 cites W2073365082 @default.
- W4294237478 cites W2081656424 @default.
- W4294237478 cites W2115769370 @default.
- W4294237478 cites W2132918507 @default.
- W4294237478 cites W2168474783 @default.
- W4294237478 cites W2463445076 @default.
- W4294237478 cites W2783165089 @default.
- W4294237478 cites W2896412441 @default.
- W4294237478 cites W2919115771 @default.
- W4294237478 cites W2973159718 @default.
- W4294237478 cites W2976022939 @default.
- W4294237478 cites W2991616716 @default.
- W4294237478 cites W3004925702 @default.
- W4294237478 cites W3020030504 @default.
- W4294237478 cites W3087408134 @default.
- W4294237478 cites W3105357426 @default.
- W4294237478 cites W3118525051 @default.
- W4294237478 doi "https://doi.org/10.1016/b978-0-12-823457-0.00008-2" @default.
- W4294237478 hasPublicationYear "2022" @default.
- W4294237478 type Work @default.
- W4294237478 citedByCount "0" @default.
- W4294237478 crossrefType "book-chapter" @default.
- W4294237478 hasAuthorship W4294237478A5023536844 @default.
- W4294237478 hasAuthorship W4294237478A5059529431 @default.
- W4294237478 hasAuthorship W4294237478A5085702695 @default.
- W4294237478 hasConcept C115961682 @default.
- W4294237478 hasConcept C12267149 @default.
- W4294237478 hasConcept C153180895 @default.
- W4294237478 hasConcept C154945302 @default.
- W4294237478 hasConcept C160633673 @default.
- W4294237478 hasConcept C205649164 @default.
- W4294237478 hasConcept C41008148 @default.
- W4294237478 hasConcept C62649853 @default.
- W4294237478 hasConcept C75294576 @default.
- W4294237478 hasConcept C81363708 @default.
- W4294237478 hasConcept C84525736 @default.
- W4294237478 hasConcept C8642999 @default.
- W4294237478 hasConcept C87360688 @default.
- W4294237478 hasConceptScore W4294237478C115961682 @default.
- W4294237478 hasConceptScore W4294237478C12267149 @default.
- W4294237478 hasConceptScore W4294237478C153180895 @default.
- W4294237478 hasConceptScore W4294237478C154945302 @default.
- W4294237478 hasConceptScore W4294237478C160633673 @default.
- W4294237478 hasConceptScore W4294237478C205649164 @default.
- W4294237478 hasConceptScore W4294237478C41008148 @default.
- W4294237478 hasConceptScore W4294237478C62649853 @default.
- W4294237478 hasConceptScore W4294237478C75294576 @default.
- W4294237478 hasConceptScore W4294237478C81363708 @default.
- W4294237478 hasConceptScore W4294237478C84525736 @default.
- W4294237478 hasConceptScore W4294237478C8642999 @default.
- W4294237478 hasConceptScore W4294237478C87360688 @default.
- W4294237478 hasLocation W42942374781 @default.
- W4294237478 hasOpenAccess W4294237478 @default.
- W4294237478 hasPrimaryLocation W42942374781 @default.
- W4294237478 hasRelatedWork W2025617366 @default.
- W4294237478 hasRelatedWork W2028968693 @default.
- W4294237478 hasRelatedWork W2041399278 @default.
- W4294237478 hasRelatedWork W2056016498 @default.
- W4294237478 hasRelatedWork W2120008580 @default.
- W4294237478 hasRelatedWork W2153189372 @default.
- W4294237478 hasRelatedWork W2163073107 @default.
- W4294237478 hasRelatedWork W2999842097 @default.
- W4294237478 hasRelatedWork W3193301557 @default.
- W4294237478 hasRelatedWork W3208266890 @default.
- W4294237478 isParatext "false" @default.
- W4294237478 isRetracted "false" @default.
- W4294237478 workType "book-chapter" @default.