Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294253345> ?p ?o ?g. }
- W4294253345 endingPage "6563" @default.
- W4294253345 startingPage "6563" @default.
- W4294253345 abstract "In the recent past, a huge number of cameras have been placed in a variety of public and private areas for the purposes of surveillance, the monitoring of abnormal human actions, and traffic surveillance. The detection and recognition of abnormal activity in a real-world environment is a big challenge, as there can be many types of alarming and abnormal activities, such as theft, violence, and accidents. This research deals with accidents in traffic videos. In the modern world, video traffic surveillance cameras (VTSS) are used for traffic surveillance and monitoring. As the population is increasing drastically, the likelihood of accidents is also increasing. The VTSS is used to detect abnormal events or incidents regarding traffic on different roads and highways, such as traffic jams, traffic congestion, and vehicle accidents. Mostly in accidents, people are helpless and some die due to the unavailability of emergency treatment on long highways and those places that are far from cities. This research proposes a methodology for detecting accidents automatically through surveillance videos. A review of the literature suggests that convolutional neural networks (CNNs), which are a specialized deep learning approach pioneered to work with grid-like data, are effective in image and video analysis. This research uses CNNs to find anomalies (accidents) from videos captured by the VTSS and implement a rolling prediction algorithm to achieve high accuracy. In the training of the CNN model, a vehicle accident image dataset (VAID), composed of images with anomalies, was constructed and used. For testing the proposed methodology, the trained CNN model was checked on multiple videos, and the results were collected and analyzed. The results of this research show the successful detection of traffic accident events with an accuracy of 82% in the traffic surveillance system videos." @default.
- W4294253345 created "2022-09-02" @default.
- W4294253345 creator A5014303401 @default.
- W4294253345 creator A5021988081 @default.
- W4294253345 creator A5046620143 @default.
- W4294253345 creator A5047982059 @default.
- W4294253345 creator A5061256285 @default.
- W4294253345 creator A5072148840 @default.
- W4294253345 creator A5081439813 @default.
- W4294253345 creator A5088405787 @default.
- W4294253345 date "2022-08-31" @default.
- W4294253345 modified "2023-09-27" @default.
- W4294253345 title "Anomaly Detection in Traffic Surveillance Videos Using Deep Learning" @default.
- W4294253345 cites W1967456674 @default.
- W4294253345 cites W2001806303 @default.
- W4294253345 cites W2026418062 @default.
- W4294253345 cites W2056002605 @default.
- W4294253345 cites W2058401212 @default.
- W4294253345 cites W2064278072 @default.
- W4294253345 cites W2066608756 @default.
- W4294253345 cites W2122646361 @default.
- W4294253345 cites W2337453828 @default.
- W4294253345 cites W2460849547 @default.
- W4294253345 cites W2462927920 @default.
- W4294253345 cites W2552458219 @default.
- W4294253345 cites W2553151007 @default.
- W4294253345 cites W2557921480 @default.
- W4294253345 cites W2618530766 @default.
- W4294253345 cites W2751810540 @default.
- W4294253345 cites W2752383117 @default.
- W4294253345 cites W2793657457 @default.
- W4294253345 cites W2801326158 @default.
- W4294253345 cites W2806252395 @default.
- W4294253345 cites W2905017682 @default.
- W4294253345 cites W2914340986 @default.
- W4294253345 cites W2942685890 @default.
- W4294253345 cites W2964032056 @default.
- W4294253345 cites W2972321833 @default.
- W4294253345 cites W2990187711 @default.
- W4294253345 cites W2996060033 @default.
- W4294253345 cites W3035421993 @default.
- W4294253345 cites W3089376936 @default.
- W4294253345 cites W3089472426 @default.
- W4294253345 cites W3123326409 @default.
- W4294253345 cites W3125697162 @default.
- W4294253345 cites W3145770415 @default.
- W4294253345 cites W3158755204 @default.
- W4294253345 cites W3190757378 @default.
- W4294253345 cites W3217064846 @default.
- W4294253345 cites W4214608374 @default.
- W4294253345 cites W4220660815 @default.
- W4294253345 cites W4281662549 @default.
- W4294253345 doi "https://doi.org/10.3390/s22176563" @default.
- W4294253345 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36081022" @default.
- W4294253345 hasPublicationYear "2022" @default.
- W4294253345 type Work @default.
- W4294253345 citedByCount "9" @default.
- W4294253345 countsByYear W42942533452022 @default.
- W4294253345 countsByYear W42942533452023 @default.
- W4294253345 crossrefType "journal-article" @default.
- W4294253345 hasAuthorship W4294253345A5014303401 @default.
- W4294253345 hasAuthorship W4294253345A5021988081 @default.
- W4294253345 hasAuthorship W4294253345A5046620143 @default.
- W4294253345 hasAuthorship W4294253345A5047982059 @default.
- W4294253345 hasAuthorship W4294253345A5061256285 @default.
- W4294253345 hasAuthorship W4294253345A5072148840 @default.
- W4294253345 hasAuthorship W4294253345A5081439813 @default.
- W4294253345 hasAuthorship W4294253345A5088405787 @default.
- W4294253345 hasBestOaLocation W42942533451 @default.
- W4294253345 hasConcept C108583219 @default.
- W4294253345 hasConcept C119857082 @default.
- W4294253345 hasConcept C127413603 @default.
- W4294253345 hasConcept C144024400 @default.
- W4294253345 hasConcept C149923435 @default.
- W4294253345 hasConcept C154945302 @default.
- W4294253345 hasConcept C200601418 @default.
- W4294253345 hasConcept C22212356 @default.
- W4294253345 hasConcept C2779888511 @default.
- W4294253345 hasConcept C2780505938 @default.
- W4294253345 hasConcept C2908647359 @default.
- W4294253345 hasConcept C38652104 @default.
- W4294253345 hasConcept C41008148 @default.
- W4294253345 hasConcept C739882 @default.
- W4294253345 hasConcept C81363708 @default.
- W4294253345 hasConceptScore W4294253345C108583219 @default.
- W4294253345 hasConceptScore W4294253345C119857082 @default.
- W4294253345 hasConceptScore W4294253345C127413603 @default.
- W4294253345 hasConceptScore W4294253345C144024400 @default.
- W4294253345 hasConceptScore W4294253345C149923435 @default.
- W4294253345 hasConceptScore W4294253345C154945302 @default.
- W4294253345 hasConceptScore W4294253345C200601418 @default.
- W4294253345 hasConceptScore W4294253345C22212356 @default.
- W4294253345 hasConceptScore W4294253345C2779888511 @default.
- W4294253345 hasConceptScore W4294253345C2780505938 @default.
- W4294253345 hasConceptScore W4294253345C2908647359 @default.
- W4294253345 hasConceptScore W4294253345C38652104 @default.
- W4294253345 hasConceptScore W4294253345C41008148 @default.
- W4294253345 hasConceptScore W4294253345C739882 @default.