Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294268348> ?p ?o ?g. }
- W4294268348 endingPage "107342" @default.
- W4294268348 startingPage "107342" @default.
- W4294268348 abstract "• Selecting suitable flower for pollination based on flowers detection and distribution. • Kiwifruit flowers were labeled into 10 classes based on flower phenology. • Flower cluster and branch junction were applied for obtaining flower distribution. • YOLOv5l reached mAP of 91.60 % on multi-class objects detection in 15.50 ms per image. • The method reached total MA of 93.30 % with processing speed of 112.46 ms per image. Asynchrony of kiwifruit flowering time results in different flower phenological stages in canopy at the same time. Pollination quality of flowers is influenced by their phenological stages, while their distributions determine fruit distributions and influence kiwifruit quality and yield. Thus, it’s necessary to find suitable flowers to be pollinated based on flower phenology and its distribution. However, influences of flower phenology and flower distribution were not considered in most previous studies about robotic pollination of kiwifruit, where pollination of all open flowers was indiscriminate. Therefore, a method was proposed for multi-class detection of kiwifruit flower and its distribution identification in orchard, which was based on You Only Look Once version 5 large (YOLOv5l) and Euclidean distance. According to kiwifruit flower phenology, kiwifruit flowers were classified into 10 classes to find suitable flowers for pollination, while flower cluster and branch junction were divided into 4 classes for obtaining flower distributions. All classes were manually labeled by rectangular bounding boxes for training and testing. Considering high detection accuracy requirements with small model size, YOLOv5l was applied to do transfer learning for multi-class detection of kiwifruit flower. Then, pixels coordinate of multi-class objects and their corresponding Euclidean distances could be gained. Finally, flower distributions in canopy were obtained by matching method. Total mean Average Precision (mAP) was 91.60 % in YOLOv5l, while the mAP of multi-class flower (10 classes) was 93.23 %, which was 5.70 % higher than that of the other 4 classes. Matching accuracy (MA) of flowers matching flower clusters was up to 97.60 %. Moreover, MA of flower cluster matching branch junction (96.20 %) and total MA (93.30 %) increased by 1.20 % and 1.00 % based on improved matching method, respectively. Total processing speed of multi-class flower detection and its distribution identification was 112.46 ms per image including 15.50 ms for image detection by YOLOv5l. Results showed that multi-class kiwifruit flowers and relative flower distributions could be fast and accurately obtained for further selecting suitable flowers for robotic pollination." @default.
- W4294268348 created "2022-09-02" @default.
- W4294268348 creator A5010342778 @default.
- W4294268348 creator A5010520943 @default.
- W4294268348 creator A5013643897 @default.
- W4294268348 creator A5019535811 @default.
- W4294268348 creator A5023133503 @default.
- W4294268348 creator A5052973372 @default.
- W4294268348 creator A5053962812 @default.
- W4294268348 creator A5065351657 @default.
- W4294268348 creator A5073289547 @default.
- W4294268348 creator A5081675173 @default.
- W4294268348 date "2022-10-01" @default.
- W4294268348 modified "2023-10-16" @default.
- W4294268348 title "Multi-class detection of kiwifruit flower and its distribution identification in orchard based on YOLOv5l and Euclidean distance" @default.
- W4294268348 cites W12483587 @default.
- W4294268348 cites W1989848868 @default.
- W4294268348 cites W2090727177 @default.
- W4294268348 cites W2119513770 @default.
- W4294268348 cites W2164474558 @default.
- W4294268348 cites W2591001874 @default.
- W4294268348 cites W2794915299 @default.
- W4294268348 cites W2912100348 @default.
- W4294268348 cites W2963857746 @default.
- W4294268348 cites W3013222095 @default.
- W4294268348 cites W3016611160 @default.
- W4294268348 cites W3042011474 @default.
- W4294268348 cites W3042421576 @default.
- W4294268348 cites W3042556338 @default.
- W4294268348 cites W3048251611 @default.
- W4294268348 cites W3085312663 @default.
- W4294268348 cites W3105930878 @default.
- W4294268348 cites W3113926525 @default.
- W4294268348 cites W3129818014 @default.
- W4294268348 cites W3132971810 @default.
- W4294268348 cites W3152088004 @default.
- W4294268348 cites W3180134609 @default.
- W4294268348 cites W3197424690 @default.
- W4294268348 cites W3198554015 @default.
- W4294268348 cites W3200923142 @default.
- W4294268348 cites W4200355651 @default.
- W4294268348 cites W4207057737 @default.
- W4294268348 cites W4220653958 @default.
- W4294268348 doi "https://doi.org/10.1016/j.compag.2022.107342" @default.
- W4294268348 hasPublicationYear "2022" @default.
- W4294268348 type Work @default.
- W4294268348 citedByCount "10" @default.
- W4294268348 countsByYear W42942683482023 @default.
- W4294268348 crossrefType "journal-article" @default.
- W4294268348 hasAuthorship W4294268348A5010342778 @default.
- W4294268348 hasAuthorship W4294268348A5010520943 @default.
- W4294268348 hasAuthorship W4294268348A5013643897 @default.
- W4294268348 hasAuthorship W4294268348A5019535811 @default.
- W4294268348 hasAuthorship W4294268348A5023133503 @default.
- W4294268348 hasAuthorship W4294268348A5052973372 @default.
- W4294268348 hasAuthorship W4294268348A5053962812 @default.
- W4294268348 hasAuthorship W4294268348A5065351657 @default.
- W4294268348 hasAuthorship W4294268348A5073289547 @default.
- W4294268348 hasAuthorship W4294268348A5081675173 @default.
- W4294268348 hasConcept C110121322 @default.
- W4294268348 hasConcept C116834253 @default.
- W4294268348 hasConcept C120174047 @default.
- W4294268348 hasConcept C129782007 @default.
- W4294268348 hasConcept C134306372 @default.
- W4294268348 hasConcept C144027150 @default.
- W4294268348 hasConcept C154945302 @default.
- W4294268348 hasConcept C2524010 @default.
- W4294268348 hasConcept C2777212361 @default.
- W4294268348 hasConcept C2780753983 @default.
- W4294268348 hasConcept C31972630 @default.
- W4294268348 hasConcept C33923547 @default.
- W4294268348 hasConcept C41008148 @default.
- W4294268348 hasConcept C59822182 @default.
- W4294268348 hasConcept C86803240 @default.
- W4294268348 hasConceptScore W4294268348C110121322 @default.
- W4294268348 hasConceptScore W4294268348C116834253 @default.
- W4294268348 hasConceptScore W4294268348C120174047 @default.
- W4294268348 hasConceptScore W4294268348C129782007 @default.
- W4294268348 hasConceptScore W4294268348C134306372 @default.
- W4294268348 hasConceptScore W4294268348C144027150 @default.
- W4294268348 hasConceptScore W4294268348C154945302 @default.
- W4294268348 hasConceptScore W4294268348C2524010 @default.
- W4294268348 hasConceptScore W4294268348C2777212361 @default.
- W4294268348 hasConceptScore W4294268348C2780753983 @default.
- W4294268348 hasConceptScore W4294268348C31972630 @default.
- W4294268348 hasConceptScore W4294268348C33923547 @default.
- W4294268348 hasConceptScore W4294268348C41008148 @default.
- W4294268348 hasConceptScore W4294268348C59822182 @default.
- W4294268348 hasConceptScore W4294268348C86803240 @default.
- W4294268348 hasLocation W42942683481 @default.
- W4294268348 hasOpenAccess W4294268348 @default.
- W4294268348 hasPrimaryLocation W42942683481 @default.
- W4294268348 hasRelatedWork W14679004 @default.
- W4294268348 hasRelatedWork W1566651525 @default.
- W4294268348 hasRelatedWork W1965169884 @default.
- W4294268348 hasRelatedWork W2008939113 @default.
- W4294268348 hasRelatedWork W2033213447 @default.
- W4294268348 hasRelatedWork W2090152127 @default.