Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294286509> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4294286509 endingPage "311" @default.
- W4294286509 startingPage "295" @default.
- W4294286509 abstract "Machine learning (ML) is an emerging area of research in the healthcare industry. The healthcare data are being generated from multiple sources along with different formats. Integrating the health data and then bringing it into the common platform for further analysis require advanced tools and techniques to generate valuable information. The healthcare professions are not able to achieve valuable knowledge for actionable clinical intelligence because of the heterogeneity, inconsistency, incompleteness, etc. of health data. Technological advancements like data mining and machine learning can be used for the same. This study discusses the role of the machine learning paradigm in healthcare analytics. The chapter also presents and implements the framework for developing machine learning models for type 2 diabetes mellitus (T2DM) disease. In this chapter, lifestyle indicators rather than clinical/pathological parameters have been used for the prediction of type 2 diabetes mellitus. The current study has involved different experts like diabetologists, endocrinologists, dieticians, nutritionists, etc. for selecting the contributing lifestyle parameters to promote health and manage diabetes. As such the study aims to develop an intelligent knowledge-based system for prediction of T2DM without the conduct of clinical tests. It can save the patient suffering from undue delays caused by unnecessary readmissions and pathological tests in hospitals. The proposed work emphasizes the use of machine learning techniques namely K-Nearest Neighbor (KNN), Logistic Regression (LR), Naïve Bayes (NB), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and Artificial Neural Network (ANN) for prediction of T2DM disease. The RF attained highest accuracy of 93.56% followed by DT, LR, SVM, NB, ANN, and KNN as 92.70%, 91.41%, 90.98%, 89.27%, 87.98%, and 84.54%, respectively. The other statistical performance measures were calculated in terms of Precision, Recall, Specificity, F1-score, Misclassification Rate, Receiver Operating Curve, etc." @default.
- W4294286509 created "2022-09-02" @default.
- W4294286509 creator A5027554717 @default.
- W4294286509 creator A5046214068 @default.
- W4294286509 creator A5090827264 @default.
- W4294286509 date "2022-01-01" @default.
- W4294286509 modified "2023-09-30" @default.
- W4294286509 title "Machine learning techniques in healthcare informatics: Showcasing prediction of type 2 diabetes mellitus disease using lifestyle data" @default.
- W4294286509 cites W2198799117 @default.
- W4294286509 cites W2261525379 @default.
- W4294286509 cites W2581082771 @default.
- W4294286509 cites W2797029508 @default.
- W4294286509 cites W2803361099 @default.
- W4294286509 cites W2912377779 @default.
- W4294286509 cites W2955053048 @default.
- W4294286509 cites W2972021855 @default.
- W4294286509 cites W2984353870 @default.
- W4294286509 cites W3014988774 @default.
- W4294286509 cites W3045445851 @default.
- W4294286509 cites W3133508302 @default.
- W4294286509 cites W3135028703 @default.
- W4294286509 cites W3153505674 @default.
- W4294286509 cites W4220974901 @default.
- W4294286509 cites W4241703958 @default.
- W4294286509 doi "https://doi.org/10.1016/b978-0-323-99864-2.00001-9" @default.
- W4294286509 hasPublicationYear "2022" @default.
- W4294286509 type Work @default.
- W4294286509 citedByCount "1" @default.
- W4294286509 countsByYear W42942865092023 @default.
- W4294286509 crossrefType "book-chapter" @default.
- W4294286509 hasAuthorship W4294286509A5027554717 @default.
- W4294286509 hasAuthorship W4294286509A5046214068 @default.
- W4294286509 hasAuthorship W4294286509A5090827264 @default.
- W4294286509 hasConcept C119599485 @default.
- W4294286509 hasConcept C119857082 @default.
- W4294286509 hasConcept C12267149 @default.
- W4294286509 hasConcept C127413603 @default.
- W4294286509 hasConcept C134018914 @default.
- W4294286509 hasConcept C138816342 @default.
- W4294286509 hasConcept C145642194 @default.
- W4294286509 hasConcept C154945302 @default.
- W4294286509 hasConcept C159110408 @default.
- W4294286509 hasConcept C160735492 @default.
- W4294286509 hasConcept C162324750 @default.
- W4294286509 hasConcept C169258074 @default.
- W4294286509 hasConcept C191630685 @default.
- W4294286509 hasConcept C2910068830 @default.
- W4294286509 hasConcept C33724603 @default.
- W4294286509 hasConcept C41008148 @default.
- W4294286509 hasConcept C50522688 @default.
- W4294286509 hasConcept C50644808 @default.
- W4294286509 hasConcept C52001869 @default.
- W4294286509 hasConcept C555293320 @default.
- W4294286509 hasConcept C71924100 @default.
- W4294286509 hasConcept C84525736 @default.
- W4294286509 hasConceptScore W4294286509C119599485 @default.
- W4294286509 hasConceptScore W4294286509C119857082 @default.
- W4294286509 hasConceptScore W4294286509C12267149 @default.
- W4294286509 hasConceptScore W4294286509C127413603 @default.
- W4294286509 hasConceptScore W4294286509C134018914 @default.
- W4294286509 hasConceptScore W4294286509C138816342 @default.
- W4294286509 hasConceptScore W4294286509C145642194 @default.
- W4294286509 hasConceptScore W4294286509C154945302 @default.
- W4294286509 hasConceptScore W4294286509C159110408 @default.
- W4294286509 hasConceptScore W4294286509C160735492 @default.
- W4294286509 hasConceptScore W4294286509C162324750 @default.
- W4294286509 hasConceptScore W4294286509C169258074 @default.
- W4294286509 hasConceptScore W4294286509C191630685 @default.
- W4294286509 hasConceptScore W4294286509C2910068830 @default.
- W4294286509 hasConceptScore W4294286509C33724603 @default.
- W4294286509 hasConceptScore W4294286509C41008148 @default.
- W4294286509 hasConceptScore W4294286509C50522688 @default.
- W4294286509 hasConceptScore W4294286509C50644808 @default.
- W4294286509 hasConceptScore W4294286509C52001869 @default.
- W4294286509 hasConceptScore W4294286509C555293320 @default.
- W4294286509 hasConceptScore W4294286509C71924100 @default.
- W4294286509 hasConceptScore W4294286509C84525736 @default.
- W4294286509 hasLocation W42942865091 @default.
- W4294286509 hasOpenAccess W4294286509 @default.
- W4294286509 hasPrimaryLocation W42942865091 @default.
- W4294286509 hasRelatedWork W2084779923 @default.
- W4294286509 hasRelatedWork W3127425528 @default.
- W4294286509 hasRelatedWork W3143658565 @default.
- W4294286509 hasRelatedWork W3204641204 @default.
- W4294286509 hasRelatedWork W4205958290 @default.
- W4294286509 hasRelatedWork W4281846282 @default.
- W4294286509 hasRelatedWork W4283016678 @default.
- W4294286509 hasRelatedWork W4283836538 @default.
- W4294286509 hasRelatedWork W4307730291 @default.
- W4294286509 hasRelatedWork W4320483443 @default.
- W4294286509 isParatext "false" @default.
- W4294286509 isRetracted "false" @default.
- W4294286509 workType "book-chapter" @default.