Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294308192> ?p ?o ?g. }
- W4294308192 abstract "Can machine learning crack the code in the nose? Over the past decade, studies tried to solve the relation between chemical structure and sensory quality with Big Data. These studies advanced computational models of the olfactory stimulus, utilizing artificial intelligence to mine for clear correlations between chemistry and psychophysics. Computational perspectives promised to solve the mystery of olfaction with more data and better data processing tools. None of them succeeded, however, and it matters as to why this is the case. This article argues that we should be deeply skeptical about the trend to black-box the sensory system's biology in our theories of perception. Instead, we need to ground both stimulus models and psychophysical data on real causal-mechanistic explanations of the olfactory system. The central question is: Would knowledge of biology lead to a better understanding of the stimulus in odor coding than the one utilized in current machine learning models? That is indeed the case. Recent studies about receptor behavior have revealed that the olfactory system operates by principles not captured in current stimulus-response models. This may require a fundamental revision of computational approaches to olfaction, including its psychological effects. To analyze the different research programs in olfaction, we draw on Lloyd's Logic of Research Questions, a philosophical framework which assists scientists in explicating the reasoning, conceptual commitments, and problems of a modeling approach in question." @default.
- W4294308192 created "2022-09-02" @default.
- W4294308192 creator A5003402537 @default.
- W4294308192 creator A5023333453 @default.
- W4294308192 date "2022-09-01" @default.
- W4294308192 modified "2023-09-30" @default.
- W4294308192 title "More than meets the AI: The possibilities and limits of machine learning in olfaction" @default.
- W4294308192 cites W1503588279 @default.
- W4294308192 cites W1525399907 @default.
- W4294308192 cites W1918514641 @default.
- W4294308192 cites W1967887064 @default.
- W4294308192 cites W1989893427 @default.
- W4294308192 cites W1991841378 @default.
- W4294308192 cites W2002016207 @default.
- W4294308192 cites W2008623056 @default.
- W4294308192 cites W2011120951 @default.
- W4294308192 cites W2012056998 @default.
- W4294308192 cites W2020564859 @default.
- W4294308192 cites W2029635057 @default.
- W4294308192 cites W2048151543 @default.
- W4294308192 cites W2053690675 @default.
- W4294308192 cites W2072248036 @default.
- W4294308192 cites W2076153041 @default.
- W4294308192 cites W2077035369 @default.
- W4294308192 cites W2081714887 @default.
- W4294308192 cites W2082188082 @default.
- W4294308192 cites W2097186487 @default.
- W4294308192 cites W2107943317 @default.
- W4294308192 cites W2115071709 @default.
- W4294308192 cites W2124046204 @default.
- W4294308192 cites W2125623071 @default.
- W4294308192 cites W2136020222 @default.
- W4294308192 cites W2142568927 @default.
- W4294308192 cites W2152204975 @default.
- W4294308192 cites W2161659751 @default.
- W4294308192 cites W2163544283 @default.
- W4294308192 cites W2207342784 @default.
- W4294308192 cites W2267570377 @default.
- W4294308192 cites W2338351981 @default.
- W4294308192 cites W2407887752 @default.
- W4294308192 cites W2507164429 @default.
- W4294308192 cites W2527889223 @default.
- W4294308192 cites W2589330732 @default.
- W4294308192 cites W2747812881 @default.
- W4294308192 cites W2757813228 @default.
- W4294308192 cites W2766418936 @default.
- W4294308192 cites W2766479272 @default.
- W4294308192 cites W2770237187 @default.
- W4294308192 cites W2788262020 @default.
- W4294308192 cites W2790623798 @default.
- W4294308192 cites W2901078122 @default.
- W4294308192 cites W2915292867 @default.
- W4294308192 cites W2945265270 @default.
- W4294308192 cites W2987493326 @default.
- W4294308192 cites W2987690779 @default.
- W4294308192 cites W3002869006 @default.
- W4294308192 cites W3015624413 @default.
- W4294308192 cites W3025932326 @default.
- W4294308192 cites W3027239586 @default.
- W4294308192 cites W3031219395 @default.
- W4294308192 cites W3038855766 @default.
- W4294308192 cites W3040497672 @default.
- W4294308192 cites W3118566525 @default.
- W4294308192 cites W3133951984 @default.
- W4294308192 cites W3137506723 @default.
- W4294308192 cites W3164868624 @default.
- W4294308192 cites W3166154083 @default.
- W4294308192 cites W3167740220 @default.
- W4294308192 cites W3177828909 @default.
- W4294308192 cites W3194134472 @default.
- W4294308192 cites W3200434522 @default.
- W4294308192 cites W3216265261 @default.
- W4294308192 cites W4213139361 @default.
- W4294308192 cites W4224024786 @default.
- W4294308192 cites W4232543752 @default.
- W4294308192 cites W4233740026 @default.
- W4294308192 cites W4241424845 @default.
- W4294308192 cites W4255100197 @default.
- W4294308192 cites W4280648344 @default.
- W4294308192 cites W4286110904 @default.
- W4294308192 cites W4298309871 @default.
- W4294308192 cites W770313112 @default.
- W4294308192 doi "https://doi.org/10.3389/fnins.2022.981294" @default.
- W4294308192 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36117640" @default.
- W4294308192 hasPublicationYear "2022" @default.
- W4294308192 type Work @default.
- W4294308192 citedByCount "2" @default.
- W4294308192 countsByYear W42943081922022 @default.
- W4294308192 countsByYear W42943081922023 @default.
- W4294308192 crossrefType "journal-article" @default.
- W4294308192 hasAuthorship W4294308192A5003402537 @default.
- W4294308192 hasAuthorship W4294308192A5023333453 @default.
- W4294308192 hasBestOaLocation W42943081921 @default.
- W4294308192 hasConcept C119857082 @default.
- W4294308192 hasConcept C15286952 @default.
- W4294308192 hasConcept C154945302 @default.
- W4294308192 hasConcept C15744967 @default.
- W4294308192 hasConcept C163214680 @default.
- W4294308192 hasConcept C169760540 @default.
- W4294308192 hasConcept C180747234 @default.