Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294309846> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4294309846 abstract "Usually, decision tree induction algorithms are limited to work with non relational data. Given a record, they do not take into account other objects attributes even though they can provide valuable information for the learning task. In this paper we present GGQ-ID3, a multi-relational decision tree learning algorithm that uses Generalized Graph Queries (GGQ) as predicates in the decision nodes. GGQs allow to express complex patterns (including cycles) and they can be refined step-by-step. Also, they can evaluate structures (not only single records) and perform Regular Pattern Matching. GGQ are built dynamically (pattern mining) during the GGQ-ID3 tree construction process. We will show how to use GGQ-ID3 to perform multi-relational machine learning keeping complexity under control. Finally, some real examples of automatically obtained classification trees and semantic patterns are shown. ----- Normalmente, los algoritmos de inducci'on de 'arboles de decisi'on trabajan con datos no relacionales. Dado un registro, no tienen en cuenta los atributos de otros objetos a pesar de que 'estos pueden proporcionar informaci'on 'util para la tarea de aprendizaje. En este art'iculo presentamos GGQ-ID3, un algoritmo de aprendizaje de 'arboles de decisiones multi-relacional que utiliza Generalized Graph Queries (GGQ) como predicados en los nodos de decisi'on. Los GGQs permiten expresar patrones complejos (incluyendo ciclos) y pueden ser refinados paso a paso. Adem'as, pueden evaluar estructuras (no solo registros) y llevar a cabo Regular Pattern Matching. En GGQ-ID3, los GGQ son construidos din'amicamente (pattern mining) durante el proceso de construcci'on del 'arbol. Adem'as, se muestran algunos ejemplos reales de 'arboles de clasificaci'on multi-relacionales y patrones sem'anticos obtenidos autom'aticamente." @default.
- W4294309846 created "2022-09-02" @default.
- W4294309846 creator A5028352941 @default.
- W4294309846 creator A5081251506 @default.
- W4294309846 date "2017-08-18" @default.
- W4294309846 modified "2023-10-01" @default.
- W4294309846 title "Induction of Decision Trees based on Generalized Graph Queries" @default.
- W4294309846 doi "https://doi.org/10.48550/arxiv.1708.05563" @default.
- W4294309846 hasPublicationYear "2017" @default.
- W4294309846 type Work @default.
- W4294309846 citedByCount "0" @default.
- W4294309846 crossrefType "posted-content" @default.
- W4294309846 hasAuthorship W4294309846A5028352941 @default.
- W4294309846 hasAuthorship W4294309846A5081251506 @default.
- W4294309846 hasBestOaLocation W42943098461 @default.
- W4294309846 hasConcept C10229987 @default.
- W4294309846 hasConcept C105795698 @default.
- W4294309846 hasConcept C113174947 @default.
- W4294309846 hasConcept C114614502 @default.
- W4294309846 hasConcept C119857082 @default.
- W4294309846 hasConcept C124101348 @default.
- W4294309846 hasConcept C132525143 @default.
- W4294309846 hasConcept C154945302 @default.
- W4294309846 hasConcept C165064840 @default.
- W4294309846 hasConcept C174599459 @default.
- W4294309846 hasConcept C183931066 @default.
- W4294309846 hasConcept C33923547 @default.
- W4294309846 hasConcept C41008148 @default.
- W4294309846 hasConcept C5481197 @default.
- W4294309846 hasConcept C80444323 @default.
- W4294309846 hasConcept C84525736 @default.
- W4294309846 hasConceptScore W4294309846C10229987 @default.
- W4294309846 hasConceptScore W4294309846C105795698 @default.
- W4294309846 hasConceptScore W4294309846C113174947 @default.
- W4294309846 hasConceptScore W4294309846C114614502 @default.
- W4294309846 hasConceptScore W4294309846C119857082 @default.
- W4294309846 hasConceptScore W4294309846C124101348 @default.
- W4294309846 hasConceptScore W4294309846C132525143 @default.
- W4294309846 hasConceptScore W4294309846C154945302 @default.
- W4294309846 hasConceptScore W4294309846C165064840 @default.
- W4294309846 hasConceptScore W4294309846C174599459 @default.
- W4294309846 hasConceptScore W4294309846C183931066 @default.
- W4294309846 hasConceptScore W4294309846C33923547 @default.
- W4294309846 hasConceptScore W4294309846C41008148 @default.
- W4294309846 hasConceptScore W4294309846C5481197 @default.
- W4294309846 hasConceptScore W4294309846C80444323 @default.
- W4294309846 hasConceptScore W4294309846C84525736 @default.
- W4294309846 hasLocation W42943098461 @default.
- W4294309846 hasLocation W42943098462 @default.
- W4294309846 hasOpenAccess W4294309846 @default.
- W4294309846 hasPrimaryLocation W42943098461 @default.
- W4294309846 hasRelatedWork W2005780 @default.
- W4294309846 hasRelatedWork W2072960953 @default.
- W4294309846 hasRelatedWork W2169280041 @default.
- W4294309846 hasRelatedWork W2352546091 @default.
- W4294309846 hasRelatedWork W2364053385 @default.
- W4294309846 hasRelatedWork W2372022658 @default.
- W4294309846 hasRelatedWork W2390910878 @default.
- W4294309846 hasRelatedWork W259357746 @default.
- W4294309846 hasRelatedWork W3173213304 @default.
- W4294309846 hasRelatedWork W2184032726 @default.
- W4294309846 isParatext "false" @default.
- W4294309846 isRetracted "false" @default.
- W4294309846 workType "article" @default.