Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294335243> ?p ?o ?g. }
- W4294335243 endingPage "25" @default.
- W4294335243 startingPage "1" @default.
- W4294335243 abstract "We propose a novel approach to the estimation of multiple Graphical Models to analyse temporal patterns of association among a set of metabolites over different groups of patients. Our motivating application is the Southall And Brent REvisited (SABRE) study, a tri-ethnic cohort study conducted in the UK. We are interested in identifying potential ethnic differences in metabolite levels and associations as well as their evolution over time, with the aim of gaining a better understanding of different risk of cardio-metabolic disorders across ethnicities. Within a Bayesian framework, we employ a nodewise regression approach to infer the structure of the graphs, borrowing information across time as well as across ethnicities. The response variables of interest are metabolite levels measured at two time points and for two ethnic groups, Europeans and South-Asians. We use nodewise regression to estimate the high-dimensional precision matrices of the metabolites, imposing sparsity on the regression coefficients through the dynamic horseshoe prior, thus favouring sparser graphs. We provide the code to fit the proposed model using the software Stan, which performs posterior inference using Hamiltonian Monte Carlo sampling, as well as a detailed description of a block Gibbs sampling scheme." @default.
- W4294335243 created "2022-09-02" @default.
- W4294335243 creator A5007651942 @default.
- W4294335243 creator A5017327595 @default.
- W4294335243 creator A5022610592 @default.
- W4294335243 creator A5037421715 @default.
- W4294335243 creator A5050004764 @default.
- W4294335243 creator A5069763431 @default.
- W4294335243 date "2022-09-02" @default.
- W4294335243 modified "2023-09-24" @default.
- W4294335243 title "Bayesian dynamic network modelling: an application to metabolic associations in cardiovascular diseases" @default.
- W4294335243 cites W1487399854 @default.
- W4294335243 cites W1536497620 @default.
- W4294335243 cites W1949750283 @default.
- W4294335243 cites W1965055200 @default.
- W4294335243 cites W1990793454 @default.
- W4294335243 cites W1993746015 @default.
- W4294335243 cites W1994719642 @default.
- W4294335243 cites W2002986652 @default.
- W4294335243 cites W2007069447 @default.
- W4294335243 cites W2017752147 @default.
- W4294335243 cites W2042470150 @default.
- W4294335243 cites W2049228615 @default.
- W4294335243 cites W2064075259 @default.
- W4294335243 cites W2068186195 @default.
- W4294335243 cites W2068509302 @default.
- W4294335243 cites W2086258274 @default.
- W4294335243 cites W2091560152 @default.
- W4294335243 cites W2100270478 @default.
- W4294335243 cites W2102239141 @default.
- W4294335243 cites W2114169935 @default.
- W4294335243 cites W2114695967 @default.
- W4294335243 cites W2118839710 @default.
- W4294335243 cites W2132555912 @default.
- W4294335243 cites W2137068224 @default.
- W4294335243 cites W2150402717 @default.
- W4294335243 cites W2155158051 @default.
- W4294335243 cites W2160234571 @default.
- W4294335243 cites W2160347316 @default.
- W4294335243 cites W2162129089 @default.
- W4294335243 cites W2163707651 @default.
- W4294335243 cites W2165009258 @default.
- W4294335243 cites W2167943787 @default.
- W4294335243 cites W2249128185 @default.
- W4294335243 cites W2314640094 @default.
- W4294335243 cites W2338627428 @default.
- W4294335243 cites W2501691835 @default.
- W4294335243 cites W2569488103 @default.
- W4294335243 cites W2577537660 @default.
- W4294335243 cites W2605710229 @default.
- W4294335243 cites W2615128400 @default.
- W4294335243 cites W2731461838 @default.
- W4294335243 cites W2757072205 @default.
- W4294335243 cites W2768385723 @default.
- W4294335243 cites W2794323786 @default.
- W4294335243 cites W2795897604 @default.
- W4294335243 cites W2914732195 @default.
- W4294335243 cites W2946854915 @default.
- W4294335243 cites W2954255198 @default.
- W4294335243 cites W2962978766 @default.
- W4294335243 cites W2963047405 @default.
- W4294335243 cites W2963357428 @default.
- W4294335243 cites W2963489521 @default.
- W4294335243 cites W3021545851 @default.
- W4294335243 cites W3044870380 @default.
- W4294335243 cites W3098834468 @default.
- W4294335243 cites W3111750509 @default.
- W4294335243 cites W3126123762 @default.
- W4294335243 cites W4211214238 @default.
- W4294335243 cites W4238253035 @default.
- W4294335243 cites W4243500197 @default.
- W4294335243 cites W4294216483 @default.
- W4294335243 cites W50860706 @default.
- W4294335243 cites W621546036 @default.
- W4294335243 doi "https://doi.org/10.1080/02664763.2022.2116746" @default.
- W4294335243 hasPublicationYear "2022" @default.
- W4294335243 type Work @default.
- W4294335243 citedByCount "1" @default.
- W4294335243 countsByYear W42943352432023 @default.
- W4294335243 crossrefType "journal-article" @default.
- W4294335243 hasAuthorship W4294335243A5007651942 @default.
- W4294335243 hasAuthorship W4294335243A5017327595 @default.
- W4294335243 hasAuthorship W4294335243A5022610592 @default.
- W4294335243 hasAuthorship W4294335243A5037421715 @default.
- W4294335243 hasAuthorship W4294335243A5050004764 @default.
- W4294335243 hasAuthorship W4294335243A5069763431 @default.
- W4294335243 hasBestOaLocation W42943352432 @default.
- W4294335243 hasConcept C105795698 @default.
- W4294335243 hasConcept C107673813 @default.
- W4294335243 hasConcept C11413529 @default.
- W4294335243 hasConcept C119857082 @default.
- W4294335243 hasConcept C149782125 @default.
- W4294335243 hasConcept C150921843 @default.
- W4294335243 hasConcept C152877465 @default.
- W4294335243 hasConcept C154945302 @default.
- W4294335243 hasConcept C158424031 @default.
- W4294335243 hasConcept C160234255 @default.
- W4294335243 hasConcept C2776214188 @default.