Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294408658> ?p ?o ?g. }
- W4294408658 endingPage "1879" @default.
- W4294408658 startingPage "1868" @default.
- W4294408658 abstract "Abstract: The progressive deterioration of neurons leads to Alzheimer's disease (AD), and develop-ing a drug for this disorder is challenging. Substantial gene/transcriptome variability from multiple cell types leads to downstream pathophysiologic consequences that represent the heterogeneity of this disease. Identifying potential biomarkers for promising therapeutics is strenuous due to the fact that the transcriptome, epigenetic, or proteome changes detected in patients are not clear whether they are the cause or consequence of the disease, which eventually makes the drug discovery efforts intricate. The advancement in scRNA-sequencing technologies helps to identify cell type-specific biomarkers that may guide the selection of the pathways and related targets specific to different stages of the disease progression. This review is focussed on the analysis of multi-omics data from various perspectives (genomic and transcriptomic variants, and single-cell expression), which pro-vide insights to identify plausible molecular targets to combat this complex disease. Further, we briefly outlined the developments in machine learning techniques to prioritize the risk-associated genes, predict probable mutations and identify promising drug candidates from natural products." @default.
- W4294408658 created "2022-09-03" @default.
- W4294408658 creator A5013544358 @default.
- W4294408658 creator A5014763747 @default.
- W4294408658 creator A5045603108 @default.
- W4294408658 creator A5046879365 @default.
- W4294408658 creator A5047094478 @default.
- W4294408658 creator A5055700073 @default.
- W4294408658 creator A5057852201 @default.
- W4294408658 creator A5079416943 @default.
- W4294408658 date "2022-09-01" @default.
- W4294408658 modified "2023-10-12" @default.
- W4294408658 title "Exploring Plausible Therapeutic Targets for Alzheimer's Disease using Multi-omics Approach, Machine Learning and Docking" @default.
- W4294408658 cites W1638297412 @default.
- W4294408658 cites W1648919072 @default.
- W4294408658 cites W1698967089 @default.
- W4294408658 cites W1970661950 @default.
- W4294408658 cites W1973593092 @default.
- W4294408658 cites W1984611452 @default.
- W4294408658 cites W1988281445 @default.
- W4294408658 cites W1993775827 @default.
- W4294408658 cites W1994839798 @default.
- W4294408658 cites W2003816877 @default.
- W4294408658 cites W2011705068 @default.
- W4294408658 cites W2016188701 @default.
- W4294408658 cites W2028908560 @default.
- W4294408658 cites W2028911700 @default.
- W4294408658 cites W2037221789 @default.
- W4294408658 cites W2047482700 @default.
- W4294408658 cites W2062210814 @default.
- W4294408658 cites W2065262208 @default.
- W4294408658 cites W2077635773 @default.
- W4294408658 cites W2079361549 @default.
- W4294408658 cites W2088148170 @default.
- W4294408658 cites W2100610977 @default.
- W4294408658 cites W2100867326 @default.
- W4294408658 cites W2103665811 @default.
- W4294408658 cites W2114029728 @default.
- W4294408658 cites W2115779804 @default.
- W4294408658 cites W2124643275 @default.
- W4294408658 cites W2137886330 @default.
- W4294408658 cites W2140718540 @default.
- W4294408658 cites W2165128853 @default.
- W4294408658 cites W2199644913 @default.
- W4294408658 cites W2248907500 @default.
- W4294408658 cites W2251801487 @default.
- W4294408658 cites W2310980987 @default.
- W4294408658 cites W2498811867 @default.
- W4294408658 cites W2606684933 @default.
- W4294408658 cites W2623234363 @default.
- W4294408658 cites W2737900099 @default.
- W4294408658 cites W2751686252 @default.
- W4294408658 cites W2799817815 @default.
- W4294408658 cites W2801296252 @default.
- W4294408658 cites W2905219483 @default.
- W4294408658 cites W2905452503 @default.
- W4294408658 cites W2906906097 @default.
- W4294408658 cites W2909386993 @default.
- W4294408658 cites W2924290921 @default.
- W4294408658 cites W2942678593 @default.
- W4294408658 cites W2965318918 @default.
- W4294408658 cites W2984998864 @default.
- W4294408658 cites W2991095675 @default.
- W4294408658 cites W2991414673 @default.
- W4294408658 cites W2993843238 @default.
- W4294408658 cites W2994687354 @default.
- W4294408658 cites W3011390471 @default.
- W4294408658 cites W3014162005 @default.
- W4294408658 cites W3015136087 @default.
- W4294408658 cites W3042611033 @default.
- W4294408658 cites W3047399117 @default.
- W4294408658 cites W3048538467 @default.
- W4294408658 cites W3092551280 @default.
- W4294408658 cites W3093714513 @default.
- W4294408658 cites W3098026072 @default.
- W4294408658 cites W3109942090 @default.
- W4294408658 cites W3112462924 @default.
- W4294408658 cites W3121181953 @default.
- W4294408658 cites W3132133099 @default.
- W4294408658 cites W3135925371 @default.
- W4294408658 cites W3164214667 @default.
- W4294408658 cites W3164781413 @default.
- W4294408658 cites W3174739771 @default.
- W4294408658 cites W3203305574 @default.
- W4294408658 cites W3205660412 @default.
- W4294408658 cites W4206508717 @default.
- W4294408658 cites W4281674662 @default.
- W4294408658 cites W967848597 @default.
- W4294408658 doi "https://doi.org/10.2174/1568026622666220902110115" @default.
- W4294408658 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36056872" @default.
- W4294408658 hasPublicationYear "2022" @default.
- W4294408658 type Work @default.
- W4294408658 citedByCount "2" @default.
- W4294408658 countsByYear W42944086582022 @default.
- W4294408658 countsByYear W42944086582023 @default.
- W4294408658 crossrefType "journal-article" @default.
- W4294408658 hasAuthorship W4294408658A5013544358 @default.
- W4294408658 hasAuthorship W4294408658A5014763747 @default.